27 research outputs found

    Physiological and morphological determinants of maximal expiratory flow in chronic obstructive lung disease

    Get PDF
    Maximal expiratory flow in chronic obstructive pulmonary disease (COPD) could be reduced by three different mechanisms; loss of lung elastic recoil, decreased airway conductance upstream of flow-limiting segments; and increased collapsibility of airways. We hypothesized that decreased upstream conductance would be related to inflammation and thickening of the airway walls, increased collapsibility would be related to decreased airway cartilage volume, and decreased collapsibility to inflammation and thickening of the airway walls. Lung tissue was obtained from 72 patients with different degrees of COPD, who were operated upon for a solitary peripheral lung lesion. Maximal flow-static recoil (MFSR) plots to estimate upstream resistance and airway collapsibility were derived in 59 patients from preoperatively measured maximal expiratory flow-volume and pressure-volume curves. In 341 transversely cut airway sections, airway size, airway wall dimensions and inflammatory changes were measured. Airflow obstruction correlated with lung elastic recoil and the MFSR estimate of airway conductance but not to airway collapsibility or to the amount of airway cartilage. The upstream conductance decreased as the inner wall became thicker. Airway collapsibility did not correlate with the amount of airway cartilage, inflammation, or airway wall thickness. We conclude that the maximal flow-static recoil model does not adequately reflect the collapsibility of the flow-limiting segment

    Progressive damage on high resolution computed tomography despite stable lung function in cystic fibrosis

    Get PDF
    For effective clinical management of cystic fibrosis (CF) lung disease it is important to closely monitor the start and progression of lung damage. The aim of this study was to investigate the ability of high-resolution computed tomography (HRCT) scoring systems and pulmonary function tests (PFT) to detect changes in lung disease. CF children (n=48) had two H

    Regulation of the Airway Caliber

    No full text

    Cerebral ß-amyloid angiopathy in aged squirrel monkeys

    No full text
    Cerebral ß-amyloid angiopathy (CAA) is an age-related disorder of the brain vasculature that is involved in up to 20% of non-traumatic cerebral hemorrhage in humans. CAA is a risk factor for cognitive decline, and may exacerbate the dementia of Alzheimer's disease. Progress in discovering the cause and potential therapies for this disorder has been hindered by the paucity of animal models, particularly models of idiopathic CAA. The squirrel monkey (Saimiri spp) develops significant CAA in the natural course of aging. To evaluate the suitability of Saimiri as a model of human CAA, we studied the distribution and composition of Aß subtypes in CAA and parenchymal (senile plaque) deposits in the brains of aged squirrel monkeys, as well as the relationship between vascular ßamyloid deposition and comorbid vasculopathies that occur in aged humans. Our findings show that: 1) CAA consists ultrastructurally of classical amyloid fibrils and is the principal type of cerebral ß-amyloidosis in squirrel monkeys; 2) The two primary isoforms of Aß (Aß40 and Aß42) coexist in most microvascular and parenchymal lesions of Saimiri, although Aß40 tends to predominate in larger arterioles; 3) CAA and parenchymal plaques overlap to a considerable degree in most affected brain areas, and are distributed symmetrically in the two hemispheres; 4) Both CAA and plaques are particularly abundant in rostral regions and comparatively sparse in the occipital lobe; 5) Capillaries are especially vulnerable to CAA in squirrel monkeys; and 6) When CAA is severe, it is associated with a small, but significant, increase in other vasculopathies, including microhemorrhage, fibrinoid extravasation and focal gliosis. These findings, in the context of genetic, vascular and immunologic similarities between squirrel monkeys and humans, support the squirrel monkey as a biologically advantageous model for studying the basic biology of idiopathic, age-related CAA, and for testing emerging therapies for human ß-amyloidoses such as Alzheimer's disease

    NFE2L2 pathway polymorphisms and lung function decline in chronic obstructive pulmonary disease

    Get PDF
    Sandford AJ, Malhotra D, Boezen HM, Siedlinski M, Postma DS, Wong V, Akhabir L, He JQ, Connett JE, Anthonisen NR, Pare PD, Biswal S. NFE2L2 pathway polymorphisms and lung function decline in chronic obstructive pulmonary disease. Physiol Genomics 44: 754-763, 2012. First published June 12, 2012; doi:10.1152/physiolgenomics.00027.2012.-An oxidant-antioxidant imbalance in the lung contributes to the development of chronic obstructive pulmonary disease (COPD) that is caused by a complex interaction of genetic and environmental risk factors. Nuclear erythroid 2-related factor 2 (NFE2L2 or NRF2) is a critical molecule in the lung's defense mechanism against oxidants. We investigated whether polymorphisms in the NFE2L2 pathway affected the rate of decline of lung function in smokers from the Lung Health Study (LHS)(n = 547) and in a replication set, the Vlagtwedde-Vlaardingen cohort (n = 533). We selected polymorphisms in NFE2L2 in genes that positively or negatively regulate NFE2L2 transcriptional activity and in genes that are regulated by NFE2L2. Polymorphisms in 11 genes were significantly associated with rate of lung function decline in the LHS. One of these polymorphisms, rs11085735 in the KEAP1 gene, was previously shown to be associated with the level of lung function in the Vlagtwedde-Vlaardingen cohort but not with decline of lung function. Of the 23 associated polymorphisms in the LHS, only rs634534 in the FOSL1 gene showed a significant association in the Vlagtwedde-Vlaardingen cohort with rate of lung function decline, but the direction of the association was not consistent with that in the LHS. In summary, despite finding several nominally significant polymorphisms in the LHS, none of these associations were replicated in the Vlagtwedde-Vlaardingen cohort, indicating lack of effect of polymorphisms in the NFE2L2 pathway on the rate of decline of lung function
    corecore