163 research outputs found
Numerical Schemes for Multivalued Backward Stochastic Differential Systems
We define some approximation schemes for different kinds of generalized
backward stochastic differential systems, considered in the Markovian
framework. We propose a mixed approximation scheme for a decoupled system of
forward reflected SDE and backward stochastic variational inequality. We use an
Euler scheme type, combined with Yosida approximation techniques.Comment: 13 page
G-Brownian Motion as Rough Paths and Differential Equations Driven by G-Brownian Motion
The present paper is devoted to the study of sample paths of G-Brownian
motion and stochastic differential equations (SDEs) driven by G-Brownian motion
from the view of rough path theory. As the starting point, we show that
quasi-surely, sample paths of G-Brownian motion can be enhanced to the second
level in a canonical way so that they become geometric rough paths of roughness
2 < p < 3. This result enables us to introduce the notion of rough differential
equations (RDEs) driven by G-Brownian motion in the pathwise sense under the
general framework of rough paths. Next we establish the fundamental relation
between SDEs and RDEs driven by G-Brownian motion. As an application, we
introduce the notion of SDEs on a differentiable manifold driven by GBrownian
motion and construct solutions from the RDE point of view by using pathwise
localization technique. This is the starting point of introducing G-Brownian
motion on a Riemannian manifold, based on the idea of Eells-Elworthy-Malliavin.
The last part of this paper is devoted to such construction for a wide and
interesting class of G-functions whose invariant group is the orthogonal group.
We also develop the Euler-Maruyama approximation for SDEs driven by G-Brownian
motion of independent interest
Optimal Multi-Modes Switching Problem in Infinite Horizon
This paper studies the problem of the deterministic version of the
Verification Theorem for the optimal m-states switching in infinite horizon
under Markovian framework with arbitrary switching cost functions. The problem
is formulated as an extended impulse control problem and solved by means of
probabilistic tools such as the Snell envelop of processes and reflected
backward stochastic differential equations. A viscosity solutions approach is
employed to carry out a finne analysis on the associated system of m
variational inequalities with inter-connected obstacles. We show that the
vector of value functions of the optimal problem is the unique viscosity
solution to the system. This problem is in relation with the valuation of firms
in a financial market
On Markovian solutions to Markov Chain BSDEs
We study (backward) stochastic differential equations with noise coming from
a finite state Markov chain. We show that, for the solutions of these equations
to be `Markovian', in the sense that they are deterministic functions of the
state of the underlying chain, the integrand must be of a specific form. This
allows us to connect these equations to coupled systems of ODEs, and hence to
give fast numerical methods for the evaluation of Markov-Chain BSDEs
Conservative interacting particles system with anomalous rate of ergodicity
We analyze certain conservative interacting particle system and establish
ergodicity of the system for a family of invariant measures. Furthermore, we
show that convergence rate to equilibrium is exponential. This result is of
interest because it presents counterexample to the standard assumption of
physicists that conservative system implies polynomial rate of convergence.Comment: 16 pages; In the previous version there was a mistake in the proof of
uniqueness of weak Leray solution. Uniqueness had been claimed in a space of
solutions which was too large (see remark 2.6 for more details). Now the
mistake is corrected by introducing a new class of moderate solutions (see
definition 2.10) where we have both existence and uniquenes
Time-Symmetric Quantum Theory of Smoothing
Smoothing is an estimation technique that takes into account both past and
future observations, and can be more accurate than filtering alone. In this
Letter, a quantum theory of smoothing is constructed using a time-symmetric
formalism, thereby generalizing prior work on classical and quantum filtering,
retrodiction, and smoothing. The proposed theory solves the important problem
of optimally estimating classical Markov processes coupled to a quantum system
under continuous measurements, and is thus expected to find major applications
in future quantum sensing systems, such as gravitational wave detectors and
atomic magnetometers.Comment: 4 pages, 1 figure, v2: accepted by PR
On a stochastic partial differential equation with non-local diffusion
In this paper, we prove existence, uniqueness and regularity for a class of
stochastic partial differential equations with a fractional Laplacian driven by
a space-time white noise in dimension one. The equation we consider may also
include a reaction term
Optimal waveform estimation for classical and quantum systems via time-symmetric smoothing
Classical and quantum theories of time-symmetric smoothing, which can be used
to optimally estimate waveforms in classical and quantum systems, are derived
using a discrete-time approach, and the similarities between the two theories
are emphasized. Application of the quantum theory to homodyne phase-locked loop
design for phase estimation with narrowband squeezed optical beams is studied.
The relation between the proposed theory and Aharonov et al.'s weak value
theory is also explored.Comment: 13 pages, 5 figures, v2: changed the title to a more descriptive one,
corrected a minor mistake in Sec. IV, accepted by Physical Review
- …