25 research outputs found

    Femtosecond x-ray diffraction reveals a liquid–liquid phase transition in phase-change materials

    Get PDF
    6 pags., 5 figs.In phase-change memory devices, a material is cycled between glassy and crystalline states. The highly temperature-dependent kinetics of its crystallization process enables application in memory technology, but the transition has not been resolved on an atomic scale. Using femtosecond x-ray diffraction and ab initio computer simulations, we determined the time-dependent pair-correlation function of phase-change materials throughout the melt-quenching and crystallization process. We found a liquid–liquid phase transition in the phase-change materials AgInSbTe and GeSb at 660 and 610 kelvin, respectively. The transition is predominantly caused by the onset of Peierls distortions, the amplitude of which correlates with an increase of the apparent activation energy of diffusivity. This reveals a relationship between atomic structure and kinetics, enabling a systematic optimization of the memory-switching kinetics.F.Q., A.K., M.N., and K.S.T. gratefully acknowledge financial support from the German Research Council through the Collaborative Research Center SFB 1242 project 278162697 (“Non-Equilibrium Dynamics of Condensed Matter in the Time Domain”), project C01 (“Structural Dynamics in Impulsively Excited Nanostructures”), and individual grant So408/9-1, as well as the European Union (7th Framework Programme, grant no. 280555 GO FAST). M.J.S., R.M., and M.W. acknowledge financial support from the German Research Council through the Collaborative Research Center SFB 917 (“Nanoswitches”) and individual grant Ma-5339/2-1. M.J.S., I.R., and R.M. also acknowledge the computational resources granted by JARA-HPC from RWTH Aachen University under project nos. JARA0150 and JARA0183. M.T., A.M.L., and D.A.R. were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, through the Division of Materials Sciences and Engineering under contract no. DE-AC02-76SF00515. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. J.L. acknowledges support from the Swedish Research Council. J.S. acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities through research grant UDiSON (TEC2017-82464-R). P.Z. gratefully acknowledges funding by the Humboldt Foundatio

    Genetic and environmental influences on the developmental trajectory of callous‐unemotional traits from childhood to adolescence

    Get PDF
    BACKGROUND: This study examined the genetic and environmental influences underlying baseline level and developmental course of callous-unemotional (CU) traits across childhood and adolescence. METHODS: The data on 8,958 twin pairs (3,108 MZ twin pairs and 5,850 DZ twin pairs) from the Twins Early Development Study were analysed. CU traits were assessed at ages 7, 9, 12 and 16 by mothers and analysed using a biometric latent growth model. RESULTS: Individual differences in the baseline level of CU traits were highly heritable (76.5%), while the heritability of the developmental course of CU traits was moderate (43.6%). The genetic influences on baseline level and developmental course of CU traits were mostly nonoverlapping. Nonshared environment made a modest contribution to the baseline level of CU traits (21.7%). Nonshared environmental influences on the developmental course of CU traits were moderate (43.2%), with nearly half of them being the same as those influencing the baseline level and just over half being specific. Shared environmental effects did not contribute to systematic change across childhood and adolescence but were rather age-specific. CONCLUSIONS: Our findings demonstrate that rather than only being conceptualized as factors of stability, genes also play a dynamic role in explaining systematic change in CU traits. Genetic effects for the initial risk and subsequent development of CU traits are not the same. In addition to genetic factors, nonshared environmental influences play an important role in explaining why some children will increase or maintain their CU traits over time, whereas other will desist. New genetic and environmental influences with age suggest that repeated, age-tailored interventions may be required throughout development to make a lasting difference in the presentation of CU traits and associated outcomes
    corecore