416 research outputs found

    Bounds for the solution set of linear complementarity problems

    Get PDF
    AbstractWe give here bounds for the feasible domain and the solution norm of Linear Complementarity Problems (LCP). These bounds are motivated by formulating the LCP as a global quadratic optimization problem and are characterized by the eigenstructure of the corresponding matrix. We prove boundedness of the feasible domain when the quadratic problem is concave, and give easily computable bounds for the solution norm for the convex case. We also obtain lower and upper bounds for the solution norm of the general nonconvex problem

    Quantum Informational Dark Energy: Dark energy from forgetting

    Full text link
    We suggest that dark energy has a quantum informational origin. Landauer's principle associated with the erasure of quantum information at a cosmic horizon implies the non-zero vacuum energy having effective negative pressure. Assuming the holographic principle, the minimum free energy condition, and the Gibbons-Hawking temperature for the cosmic event horizon we obtain the holographic dark energy with the parameter d≃1d\simeq 1, which is consistent with the current observational data. It is also shown that both the entanglement energy and the horizon energy can be related to Landauer's principle.Comment: revtex,8 pages, 2 figures more detailed arguments adde

    Asynchronous Teams for probe selection problems

    Get PDF
    AbstractThe selection of probe sets for hybridization experiments directly affects the efficiency and cost of the analysis. We propose the application of the Asynchronous Team (A-Team) technique to determine near-optimal probe sets. An A-Team is comprised of several different heuristic algorithms that communicate with each other via shared memories. The A-Team method has been applied successfully to several problems including the Set Covering Problem, the Traveling Salesman Problem, and the Point-to-Point Connection Problem, and lends itself well to the Probe Selection Problem. We designed and developed a C + + program to run instances of the Minimum Cost Probe Set and Maximum Distinguishing Probe Set problems. A program description and our results are presented in the paper
    • …
    corecore