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We give here bounds for the feasible domain and the solution norm of Linear Complementarity 
Problems (LCP). These bounds are motivated by formulating the LCP as a global quadratic op- 
timization problem and are characterized by the eigenstructure of the corresponding matrix. We 
prove boundedness of the feasible domain when the quadratic problem is concave, and give easily 
computable bounds for the solution norm for the convex case. We also obtain lower and upper 
bounds for the solution norm of the general nonconvex problem. 
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Introduction 

W e  are  concerned  here with some proper t ies  o f  the l inear  c o m p l e m e n t a r i t y  p ro-  

b lem,  tha t  has  the fo l lowing  fo rm:  

F ind  x e  ~n such tha t  

M x  + q >__ O, x > O, x T M x  + qX x = 0 (LCP)  

(or p rove  tha t  such an x does  not  exist) where M n × n is a real  ma t r ix  and  q e ~n. F o r  

given M and q the  p r o b l e m  is genera l ly  deno ted  by  L C P ( M ,  q).  

This  p r o b l e m  has m a n y  i m p o r t a n t  app l i ca t ions  in science and  t echno logy  in- 

c luding  f luid f low,  economic  equ i l ib r ium analysis ,  and  numer ica l  so lu t ions  o f  dif-  

ferent ia l  equa t ions .  F o r  a review and  m a n y  references regard ing  these app l i ca t ions  
see [1] and  [7]. 

I f  the  L C P  is solvable ,  then  it has a so lu t ion  tha t  occurs  at  some ver tex o f  the  

assoc ia ted  po lyhed ra l  set S = {x: M x  + q >_ O, x>__ 0} c_ ~n.  A n  i m p o r t a n t  ques t ion  o f  

bo th  prac t ica l  and  theore t ica l  interest  is the  boundednes s  o f  the  so lu t ion  set or  o f  
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the feasible domain S. Attempts to answer this question can be found in [5], [11]. 
More recently, Mangasarian [8] obtained some easily computable bounds for the 
positive semidefinite LCP. For problems with unbounded feasible domain S or un- 
bounded solution set see [3] and [4]. 

In this note we present simple numerical bounds for the cases where the matrix 
ig I=M+M T is positive or negative definite, then generalize for the indefinite case. 
In particular we show that when _/~is negative definite, then the corresponding feasi- 
ble domain S is always bounded, and when ~¢ is positive definite, then the solution 
set is also contained in an easily computed rectangle (that may be tight in some 
cases). Most of  the results are motivated by formulating LCP as a global optimiza- 
tion problem [10]. 

Global optimization formulation 

The possibility of  formulating the LCP as an equivalent constrained quadratic 
problem, was first discussed in [2]. This quadratic problem has the form: 

global min q~(x) = ½xT(M+ MT)x+ q'rx (GP) 
x~S  

and S =  {x: x e  ~n, Mx+ q>_O, x _ 0 } .  
In this formulation a lower bound is known a priori, that is ~0(x)_> 0. If the LCP 

has a finite number of  solutions, then all solutions are vertices of  S. If there are an 
infinite number of  solutions, one occurs at some vertex of  S. If o e S is such a solu- 
tion vertex, then 

global min ¢(x) = ¢(v) = O. 
x e S  

Because of  this requirement, the LCP may have no solution even if the feasible do- 
main is nonempty. 

Example. Let 

[ - 1  12] q T = ( _ l ,  _1)" M =  1 ' 

Then LCP(M, q) has a nonempty feasible domain S, but has no solution since the 
global minimum occurs at the vertex v=(0,  1) with O(o)= 1 >0.  The problem of 
characterizing LCPs with a nonempty feasible domain that have a solution remains 
a difficult one. 

The set S may also be unbounded ([3], [4], [6]). Since the solutions occur at ver- 
tices of  S and since we may have only finitely many of them, the set of  vertices is 
contained in some bounded rectangle [9, p., 30]. We need numerical bounds that 
are easily computable and practical for computational considerations. 
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Boundedness of feasible domain and solution norm of LCP 

The matrix As'/is symmetric and therefore all its eigenvalues are real numbers. In 
what follows we assume Al_<Az_< ... ___A n, and use the euclidean norm. 

Theorem 1. I f) f4 is negative definite, then the feasible domain o f  the corresponding 
L C P  is bounded. In fact, it is contained in the rectangle 

{x: o<_xi<_2[Iqll/l~.,I, i= 1, . . . ,n} .  

Proof.  We have 

(p(X) = ½xTff'IX + qTx< ½A n [[X[I 2 + IIq[I " [[x[I = (½A,llx[[ + Ilqll)[Ixll • 

since feasibility requires q~(x)>0, x is infeasible if ~0(x)<0, that is if ½A,[[x][+ 
[[q[I <0.  Therefore x is infeasible if Ilx[[ >2[Iqll/lAnl, so that the feasible domain must 
be contained in the rectangle {x: O<xi<2[Iqll/IA,,] }. 

Remarks. When Av/is negative semidefinite (has at least one zero eigenvalue), the 
corresponding feasible domain S may be bounded or unbounded, as shown by the 
examples: 

(a) The feasible domain S of  the LCP with the following data is unbounded. 

M = [  -11 -11] '  q T = ( _ l , 2 ) .  

In this example, the matrix As/has eigenvalues A2 = - 2 ,  A 1 = 0  
(b) The next example shows that although 37/may have zero eigenvalues, S can 

be bounded. 

M = [  -14 -04] '  q T = ( 2 ' - 2 ) "  

Later we give a different proof  of  a similar result about the boundedness of  S 
when AT/is negative definite matrix. 

In the case where A7/is positive definite the corresponding feasible set S is always 
unbounded. However, in that case we may obtain bounds on the (unique) solution 
of  LCP. Different bounds which also depend on the eigenvalues of  AI are given in 
[81. 

Theorem 2. I f  )9I is positive definite, then the vertex that solves the L C P  is contained 
in the rectangle 

{x: O<~xi<~2llq[l/Ax, i= 1, . . . ,n} .  

Proof .  When ATl is positive definite, we have 
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dfl(X) = ½XT)~Ix+ qTx>_ ½)'111xll 2 -  Uqll" [Ixll-> (½,h Ilxl/- IIqIDIIxIP • 

If H > 2llqjl/2~, then q~(x)> 0 and therefore the vertex v such that q~(o)= 0 belongs 

to the rectangle {x: 0<_xi<__211q[]/21}. 

We consider now a more general approach, where we assume only that the matrix 
57I is nonsingular. We first state and prove a simple but very useful lemma. 

Lemma 1. I f  x ~ ff~n is a solution to LCP(M, q) and 2 =- - l~ I -  l q (generally 2 is a sta- 

tionary point  o f  ~O(x)), then we have 

(X - 2)TffI(X - 2) = qT/~f - I q. (1) 

Proof. If x is a solution of  the LCP and z any vector in ~ ' ,  then it is easy to see 

that 

q~(Z) = ½(Z- x)Tff/(Z --X) + zT I(4X + qT x + qTz. (2) 

NOW let z=X.  Using the fact that 2 =  - 3 7 / - l q  and ¢~(2)= -½qT-hT/ lq substituting 

in the above relation (2) we prove that 

(X - 2)T_AT/(x -- 2) = -- qT2 = qTff4- I q. 

Using Lemma 1, we are going to prove a number of  results which depend on the 
sign of smallest and largest eigenvalues 21 and 2~ of f / .  

Theorem 3. Assume that 2~>0. Then any solution x o f  LCP(M, q) satisfies 

IIx-nil---IIq II/,t~. 

Proof .  From (1), using 2111xl]2<xWMx~2,~nxn 2 for any x, we have 

).nllx-2112-_-IlqllZ/,~n. 

Since ;t~ > 0, 

fix_ x112 > ([Iqtl '~2 [Iq[[ 

Corollary 1. l f  ~/I is positive definite and x is the unique solution o f  LCP(M, q), then 

Ilqll Ilqll <- LIx- xll <- - -  
2, 21 

Example. Note that the above bounds may be tight as shown by the next simple 

example: 
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 =i10 qT:(10, 
The unique solution of the corresponding LCP, is the vertex x T = (1, 0). Using the 
above bounds we obtain ½_<llx-xll_<½, that is, IIx-xll =½. 

T h e o r e m  4. I f  A1 < 0  and x & a solution o f  LCP(M, q), then 

[Ix-xll > [Iqll/IA! I. 

P r o o f .  From (1), ~I[[X--.~[12~-~ [Iql[2/A1, and since Al<0 we have 

[Ix ~[[z> (Ilql[ ~2 [Iqll - _ \ - ~ - /  or IIx-~ll~lA,[. 

C o r o l l a r y  2. I f  Al<0  and An>0, then the solution x o f  LCP(M, q) satisfies 

I 1 1 1  IIx-xIl>-AIIqll, A=max  jAil,An . 

C o r o l l a r y  3. I f  iV1 & negative definite and x & a solution o f  LCP(M, q), then 

[All I~.1 

In fact, the upper bounds obtained above for the negative definite case are special 
cases of  a more general theorem. 

T h e o r e m  5. I f  All is negative definite, then the feasible domain S & contained in the 
rectangle 

{x: O<-x~<-~i+ Ilqll/IA,I, i :  1 . . . .  n}. 

P r o o f .  Let  z = x -  8 or x = z + ~. Then 

~(X) = ½ zT IfflZ + qT z + ~(X) + zT Mx  = ½ ZT ~IZ + qT z -- ½ qT ~ l -  l q 

=½zT~4z_½qT~/I-1q= I T - ~(Z M Z -  qT~'l- lq). 

Then we have that O(x)<½(An[tZ[tA+ (1/2,)llq[12). Then x is infeasible if 0 ( x ) < 0  or 
is infeasible when [Iz[I > Ilqil/l'~nl =P. Therefore IIx-xll-</~ and 

SC_{x:O<~xi<~Xi+t~  , i=1  . . . . .  n}. 

Example. Consider the following LCP(M, q): 
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- 1  1] 
M =  1 - 1  ' q T = ( _ l , 2 ) .  

Then ./~ has eigenvalues 2~ = 2 2 = -  2 and g =  ( -  .5, 1). Applying the theorem we 
see that, for any feasible point x we have [Ix-~JI---1/5/2. Note that for this example 
the bound is tight if x =  (0, 2) (the solution of the LCP(M, q)). 

In case the matrix M itself is symmetric and nonsingular with eigenvalues 
21 < --. <2  n, then the following is true: 

Theorem 6. Suppose  that 2 ,  > O. I f  x & a solution vector o f  LCP(M, q), then we 
have 

IIxll ~ ~c.llx'll. I IM- 1 II • 

Proof.  Consider the following LCP(M 1, _ M - l q ) :  

Find o e ~n satisfying 

vT M - lo -- ( M -  I q)Tt) =0,  

M - l o - M - l q > - O ,  v~O.  

It is easy to see that if v is solution of LCP(M -1, - M - l q ) ,  then x = M - l ( o - q )  is 
a solution of LCP(M, q). Using the same techniques as in Lemma 1 for the above 
LCP we prove that 

(v - q)T M -  l (O - q) = -- qT M -  1 (V -- q). 

Then 

1 
3--~ I[o - qll2~ II- qTM- ' I I"  IIv - all = II~ll" 11o- q[I 

which implies: 

[I v - q II --- 2n IIx II- 

But x = M - l ( v - q ) ,  so from the above relation we obtain: 

Ilxll ~ IIM- Ill" I Io -  ql] < 2. M "  II M -  111. 

Concluding remarks 

Bounds for the solution norm and the feasible domain of the Linear Complemen- 
tarity Problem were derived. Since the bounds involve the eigenvalues of the cor- 
responding symmetric matrix 57/in the quadratic formulation, this indicates the 
significance of  the eigenstructure in proving certain results. 



Bounds for  the solution set o f  LCPs 261 

Such bounds may be useful in obtaining information on where solutions lie 
without actually solving the problem. This is important when the problem is non- 
convex and therefore difficult to solve. Finally, these bounds can be useful in 
enumerative and global optimization methods of solution of LCPs (see for example 
[lO]). 
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