
Discrete Optimization 5 (2008) 74–87
www.elsevier.com/locate/disopt

Asynchronous Teams for probe selection problemsI

Cláudio N. Meneses, Panos M. Pardalos∗, Michelle Ragle

Department of Industrial and Systems Engineering, University of Florida, 303 Weil Hall, Gainesville, FL 32611, USA

Received 2 September 2005; received in revised form 18 November 2007; accepted 25 November 2007
Available online 8 January 2008

Abstract

The selection of probe sets for hybridization experiments directly affects the efficiency and cost of the analysis. We propose
the application of the Asynchronous Team (A-Team) technique to determine near-optimal probe sets. An A-Team is comprised
of several different heuristic algorithms that communicate with each other via shared memories. The A-Team method has been
applied successfully to several problems including the Set Covering Problem, the Traveling Salesman Problem, and the Point-to-
Point Connection Problem, and lends itself well to the Probe Selection Problem. We designed and developed a C++ program to
run instances of the Minimum Cost Probe Set and Maximum Distinguishing Probe Set problems. A program description and our
results are presented in the paper.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Probe selection; Asynchronous Team; Near-optimal solution; Heuristic

1. Introduction

Scientists in the past have relied upon culture methods to study microbial communities. The amount of
information they could derive from such studies was minimal given the tremendous complexity and diversity of
microbial communities. It is believed that more than 99% of most microbial communities consist of uncultured
microorganisms [5]. The development of rRNA-based analysis methods has resulted in the identification of thousands
of these previously unknown microorganisms. One such method is that of oligonucleotide fingerprinting which
uses radioactively labeled DNA probes to identify a large number of clones through a series of hybridization
experiments [1,8].

The design and selection of probe sets plays a vital role in hybridization experiments. In this paper we propose the
use of the Asynchronous Team (A-Team) technique to determine near-optimal probe sets for the given sets of clones.
We focus our attention on two probe selection problems called the Maximum Distinguishing Probe Set (MDPS) and
the Minimum Cost Probe Set (MCPS) [1].

The A-Team method was proposed by Souza and Talukdar [3]. An A-Team is comprised of several different
heuristic algorithms, called agents, that communicate with each other by means of shared memories. The shared

I This work has been partially supported by NSF, NIH and CRDF grants.
∗ Corresponding author.

E-mail addresses: claudio@ufl.edu (C.N. Meneses), pardalos@ufl.edu (P.M. Pardalos), raglem@ufl.edu (M. Ragle).

1572-5286/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.disopt.2007.11.006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82155523?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/disopt
mailto:claudio@ufl.edu
mailto:pardalos@ufl.edu
mailto:raglem@ufl.edu
http://dx.doi.org/10.1016/j.disopt.2007.11.006

C.N. Meneses et al. / Discrete Optimization 5 (2008) 74–87 75

memories store solutions generated by agents. Each agent can make its own decisions about inputs, scheduling and
resource allocation. The A-Team method lends itself well to the solution of combinatorial problems.

In the next section we describe the problems in detail with examples. In Section 3, we give a brief description of the
A-Team technique. Sections 4 and 5 outline the A-Team for MDPS and MCPS respectively, with detailed algorithms.
In Section 6, we discuss issues related to the implementation. Computational results are given and discussed in
Section 7, and closing remarks are stated in Section 8.

2. Probe selection problems

The analysis of microbial communities gives rise to interesting combinatorial problems. Given a population C of
clones, to analyze C we need to choose a set S of oligonucleotide probes of a given length l from a large set of
candidate probes. Clones and probes are represented as sequences over the alphabet {A,C,G,T}.

A probe p is said to distinguish a pair of clones c and d if p is a substring of exactly one of c or d. In some
applications clones have length approximately 1500 and probes have length between 6 and 10. In a hybridization
experiment the fluorescence response is linear with respect to the number of occurrences of the probe in a clone up to
a certain threshold R. As a result there are different versions of the distinguishability criteria. We will consider two
cases: R = 1 and R = 4. Below we define the S-fingerprint. In the case where R = 1, the S-fingerprint will always
be binary, while any case where R 6= 1 will result in a non-binary S-fingerprint. In this paper, we thus refer to the case
where R = 1, as binary, and where R = 4, as non-binary.

Example 2.1. Let C = {AAACCT G A, AAAC AT AAA, ACT AACG} and P = {CCT, ACT, AAA, GCT A, ACG}.
If R = 1, then S = {CCT, ACT } is a smallest set of probes such that two distinct clones c and d from C are
distinguished by at least one probe in S. That is, probe CCT distinguishes clones AAACCTGA and AAACATAAA,
and clones AAACCTGA and ACTAACG, but it does not distinguish clones AAACATAAA and ACTAACG; The
probe ACT distinguishes clones AAACATAAA and ACTAACG.

If R = 4, then S = {AAA} is a smallest set of probes that distinguishes any two distinct clones in C.

Let occ(p, c) denote the number of occurrences of probe p in clone c. Given a finite set S of probes, the S-
fingerprint of clone c, denoted by fingerprintS(c), is the vector of values min{R, occ(p, c)} over all p ∈ S.

Example 2.2. Let C andP be as in Example 2.1, and R = 1. If S = {CCT, AAA}, then occ(CCT, AAACCT G A) =

1, occ(AAA, AAACCT G A) = 1, fingerprintS(AAACCT G A) = [1, 1]. Similarly, fingerprintS(AAAC AT AAA) =

[0, 1], fingerprintS(ACT AACG) = [0, 0].

A set S of probes distinguishes two clones c and d if fingerprintS(c) 6= fingerprintS(d). Let C2 denote the set of all
pairs of different clones from C, that is, C2

= {(c, d) | c, d ∈ C, c < d}, where “<” is an arbitrary (e.g., lexicographic)
ordering of C. We denote by ∆S ⊆ C2 the set of pairs of clones that are distinguished by set S.

In this paper we study two probe selection problems, namely:

MAXIMUM DISTINGUISHING PROBE SET (MDPS)
Instance: A set C = {c1, c2, . . . , cm} of clones, a set P = {p1, p2, . . . , pn} of probes, and an integer k.
Solution: A subset S ⊆ P , with |S| = k.
Measure: |∆S|, to be maximized.
MINIMUM COST PROBE SET (MCPS)
Instance: A set C = {c1, c2, . . . , cm} of clones and set P = {p1, p2, . . . , pn} of probes.
Solution: A subset S ⊆ P such that ∆S = C2.
Measure: |S|, to be minimized.

Both problems MDPS and MCPS are NP-hard when the length of probes is unbounded [1]. In [1], the authors
tackle MCPS using a Lagrangian relaxation-based heuristic, and the MDPS using a Simulated Annealing algorithm.

In this paper we present a technique called A-Team to find near-optimal solutions to MDPS and MCPS. An A-Team
is an organization of agents that communicate with each other by means of shared memories. Each agent is a heuristic
strategy that can make its own choices about its inputs, scheduling and resource allocation. Shared memories are
repositories of solutions generated by agents. This technique was proposed by Souza and Talukdar [3] and has been
applied successfully to the Traveling Salesman Problem [3], Flow Shop Scheduling Problem, Job Shop Scheduling
Problem, Set Covering Problem, and Point-to-Point Connection Problem [4].

76 C.N. Meneses et al. / Discrete Optimization 5 (2008) 74–87

Fig. 1. Example of an A-Team. Arrows represent agents and rectangles represent memories.

3. Asynchronous Team

In this section we give a brief description of what an A-Team is. In Fig. 1 an A-Team is shown, where arrows and
rectangles represent, respectively, agents and shared memories. Agents can read from and write to shared memories.
Shared memories can contain other shared memories. In Fig. 1 Agent A reads from Memory 1 and writes to Memory
1, Agent B reads from Memory 1 and writes to Memory 2. Agent F reads from Memory 1 and writes to both memories
2 and 3. While Agent G is responsible to fill with solutions the memories 2 and 3, Agent H is responsible for the
elimination of solutions from memories 2 and 3.

An A-Team is characterized predominantly by three features:

• Autonomous agents: They make their own choice about their input selection, scheduling, and resource allocation
policy.
• Asynchronous communications: Agents can read and write information in shared memories without any

synchronization among them.
• Cyclic dataflow: Agents retrieve, modify, and store information continuously in the shared memories.

In Sections 4 and 5, we describe the A-Teams agents that we designed for the MDPS and MCPS problems. In the
process of developing the A-Teams approach for both problems, many agents (or algorithms) were developed and
tested on a collection of test datasets that did not include any of the data whose results are presented in Section 7.
Only those that produced the best results consistently were included in the A-Teams. The test datasets were also used
to identify the best parameter settings.

4. A-Team for the MDPS

In this section we design an A-Team to find near-optimal solutions to MDPS instances. Throughout this section
the set S is used to represent the solution, where S is a set of k probes that distinguishes a maximum number of clone
pairs. We start by defining the heuristic agents (see Fig. 2).

Construction agent C1:
This agent generates a feasible solution to an MDPS instance by selecting a random k-subset S from P .

1. Create a random k-subset S from P
2. Compute S-fingerprint of each clone in C
3. return S, ObjectiveFunctionValue(S).

Algorithms 1–4 detail the functions required for Agent C1. Algorithm 3 gives a naive implementation of the
calculation of the objective function value, |∆S|, where the S-fingerprints for each pair of distinct clones are compared
in O(m2k) time. In Section 6 we give a O(mk) time algorithm for computing |∆S| [1]. Note that |∆S| represents the
number of pairs of clones distinguished by the solution set S.

C.N. Meneses et al. / Discrete Optimization 5 (2008) 74–87 77

Fig. 2. A-Team for the MDPS: Agents and shared memories.

Input: P = {p1, . . . , pn}, k
Output: S
I ← {1, 2, . . . , n};
S← ∅;
for i ← 1 to k do

j ← randomly choose an element from the index set I ;
S← S ∪ {p j };
I ← I − { j};

end
return S

Algorithm 1: Create a random k-subset S from P .

Input: C = {c1, . . . , cm }, P = {p1, . . . , pn}, S, R
Output: fingerprintS(c) for all c ∈ C
for i ← 1 to m do

for each p j ∈ S do
compute occ(p j , ci);
fingerprintS(ci)[j] ← min{R, occ(p j , ci)};

end
end
return {fingerprintS(c) : c ∈ C}

Algorithm 2: Compute S-fingerprint of each clone in C.

Input: C = {c1, . . . , cm }, S
Output: |∆S |

Compute S-fingerprint of each clone in C;
d ← 0;
for i ← 1 to m − 1 do

for j ← i + 1 to m do
if fingerprintS(ci) 6= fingerprintS(c j) then

d ← d + 1;
end

end
end
return d;

Algorithm 3: Simple way to compute |∆S|. This algorithm runs in O(m2k) time.

78 C.N. Meneses et al. / Discrete Optimization 5 (2008) 74–87

Input: probe p, clone c
Output: number of occurrences of probe p in clone c
t ← 0;
for i ← 1 to length(c)− length(p)+ 1 do

if (p = substring(c, i, i + length(p)− 1)) then
t ← t + 1;

end
end
return t ;

Algorithm 4: Compute occ(p, c). Substring(c, i, j) returns the substring in c that starts at position i and ends at
position j .

Consensus-based agent CB1:
This agent works together with agent C2.

1. Randomly select r solutions, say Si for i = 1, . . . , r , from Memory M1

2. S′← ∩r
i=1 Si

3. return S′.

Consensus-based agent CB2:
This agent works together with agent C2.

1. Randomly select two solutions, say S1 and S2, from Memory M1

2. If objective function value of S1 is better than the objective function value of S2, then S′ ← S1
\ S2; else

S′← S2
\ S1

3. return S′.

Construction agent C2:
This agent works together with agents CB1 and CB2.

1. Select a solution, say S1, from Memory M2

2. t ← |S1
|

3. Randomly select k − t probes from P , say p′1, p′2, . . . , p′(k−t), such that p′1, p′2, . . . , p′(k−t) do not belong to S1

4. S← S1
∪ {p′1, p′2, . . . , p′(k−t)}

5. return S, ObjectiveFunctionValue(S).

Construction agent C3:
This agent constructs a feasible solution by selecting probes that distinguish a large fraction of the pairs of clones.

The intuition behind this agent is that it is unlikely for probes distinguishing only a small fraction of the pairs of clones
to appear in a good solution. Algorithm 5 gives the details for this construction agent.

1. Randomly select a solution, say S1, from Memory M1

2. S← ∅

3. For each p ∈ S1, compute the fraction of pairs from {fingerprint{p}(c) : c ∈ C} that are distinct. If this fraction is
greater than the parameter ratio, then insert probe p into S

4. If |S| < k, then randomly select k − |S| probes from the set P \ S and insert them into S.

5. return S, ObjectiveFunctionValue(S).

C.N. Meneses et al. / Discrete Optimization 5 (2008) 74–87 79

Input: C = {c1, . . . , cm }, P = {p1, . . . , pn}, k, R
Output: S, ObjectiveFunctionValue(S)

Randomly select a solution, say S1, from Memory M1;
S← ∅;
i ← 0;
Q ← (m2

− m)/2;
Stop← false;
for probe p ∈ S1 and Stop = false do

t ← 0;
for each pair of clones (c, d) ∈ C2 do

if (fingerprint{p}(c) 6= fingerprint{p}(d)) then
t ← t + 1;
if (t

Q > ratio) then
S← S ∪ {p};
i ← i + 1;
break;

end
end

end
if (i = k) then

Stop← true;
end

end
if (i < k) then

for j ← i + 1 to k do
Randomly select a probe, say p, from the set P \ S;
S← S ∪ {p};

end
end
return S, ObjectiveFunctionValue(S);

Algorithm 5: Detailed algorithm for Agent C3.

In the MDPS each feasible solution is a set of k probes. We say that two sets of probes are t-neighbors if they can be
obtained from each other by substituting exactly t of the probes, for t = 1, . . . , k. One can use the idea of generating
neighbors of a given solution to try to improve a solution. The next two agents, I1 and I2, are based on this approach.

Improvement agent I1:

1. Randomly select a solution, say S1, from Memory M1
2. Randomly generate a 1-neighbor of S1, say S. If S is better than S1, then replace S1 by S and stop. If S is not better

than S1, then repeat the process until either a better solution is produced, or the maximum number of allowed
attempts (input by the user) has been reached.

3. return S, ObjectiveFunctionValue(S).

Improvement agent I2:

1. Randomly select a solution, say S1, from Memory M1
2. Generate a 2-neighbor of S1, say S. If S is better than S1, then replace S1 by S and stop. If S is not better than

S1, then repeat the process until either a better solution is produced, or the maximum number of allowed attempts
(input by the user) has been reached.

3. return S, ObjectiveFunctionValue(S).

Destructor agent D1:
This agent deletes the worst solution in the Memory M1.
Once the initial set of feasible solutions is created by Agents C1 or C3 and saved to Memory M1, the remaining

agents work to improve the set of solutions. If an agent generates a candidate solution, the objective function value of
the solution is calculated and used to determine whether the solution will be added to M1. Suppose that the objective
function value of the new candidate solution is T and the best objective function value of the solutions in M1 is Y, then
only if |Y − T |/Y ≤ error tolerance will the new solution be added to M1. If the solution is added, then Agent
D1 is called to delete the worst solution from M1, thus the number of solutions in M1 remains constant.

80 C.N. Meneses et al. / Discrete Optimization 5 (2008) 74–87

Fig. 3. A-Team for the MCPS: Agents and shared memories.

5. A-Team for the MCPS

In this section we describe an A-Team for the MCPS. As noticed in [1], this problem is a special case of the well-
known Set Covering Problem, where the universe to be covered is C2 and the covering sets are the various ∆p, where
∆p is defined as follows for a given probe p (see Fig. 3).

Using the notation introduced in Section 2 for ∆S , we let ∆p j be the set of pairs of clones in C2 that are
distinguished by the single probe p j ∈ P . Algorithm 7 describes in detail how to compute ∆p j .

To make things clear we define formally the Set Covering Problem.

Set Covering Problem

Instance: A ground set E = {e1, . . . , em}, subsets S1, . . . , Sn ⊆ E , and cost w j for each subset S j .

Objective: Find a set I ⊆ {1, . . . , n} such that ∪ j∈I S j = E and
∑

j∈I w j is minimum.

Casting the MCPS as the Set Covering Problem we need to set E = C2, S j = ∆p j , where p j is a probe in P , and
wp j = 1 for each probe p j ∈ P .

Construction agent C1:
The idea of this agent is to go through the sets ∆p j and pick the one that will distinguish the largest number of

pairs of clones yet to be distinguished. The algorithm details are given in Algorithm 6. Algorithm 7 describes how ∆p
is found for a given individual probe.

Input: C2, ∆p1 , . . . ,∆pn , and set of probes S

Output: Probe set S
for j = 1 to n do

∆̃p j ← ∆p j ;
end
while ∆S 6= C2 do

L ← Argmaxp j :∆̃p j 6=∅
|∆̃p j |;

pi ← random(L);
S← S ∪ {pi };
for j = 1 to n do

∆̃p j ← ∆̃p j \∆pi ;
end

end

Algorithm 6: Agent C1 (greedy algorithm). Function Argmax returns a set of probes p j such that |∆̃p j | is
maximized. Function random randomly selects a probe from the set L .

C.N. Meneses et al. / Discrete Optimization 5 (2008) 74–87 81

Input: C = {c1, . . . , cm }, probe p

Output: ∆p (i.e., set of pairs of clones in C2 that are distinguished by probe p)

Compute p-fingerprint of each clone in C;
∆p ← ∅;
for i ← 1 to m − 1 do

for j ← i + 1 to m do
if fingerprint p(ci) 6= fingerprint p(c j) then

∆p ← ∆p ∪ {(ci , c j)};
end

end
end
return ∆p ;

Algorithm 7: Compute ∆p for a given probe p ∈ P .

Consensus-based agent CB1:
This agent works together with agent C2.

1. Randomly select r solutions, say Si for i = 1, . . . , r , from Memory M1
2. S′← ∩r

i=1 Si

3. return S′.

Consensus-based agent CB2:
This agent works together with agent C2.

1. Randomly select two solutions, say S1 and S2, from Memory M1
2. If |S1

| > |S2
|, then S′← S1

\ S2; else S′← S2
\ S1

3. return S′.

Construction agent C2:
This agent works together with agents CB1 and CB2.

1. Select a solution, say S1, from Memory M2
2. Call agent C1 with the input parameter S = S1.

Construction agent C3:
This agent is a variant of agent C3 given in the previous section.

1. Randomly select a solution, say S1, from Memory M1
2. S′← ∅
3. For each p ∈ S1, compute the fraction of pairs from {fingerprint{p}(c) : c ∈ C} that are distinct. If this fraction is

greater than the parameter ratio, then insert probe p into S′

4. Call agent C1 with the input parameter S = S′.

Improvement agent I1:
Given a feasible solution S for the MCPS, define a 2, 1-exchange as follows: for all pairs of probes in S, if possible,

exchange two probes with one probe not in S.

1. Randomly select a solution, say S1, from Memory M1
2. Apply the 2,1-exchange in S1 and generate the feasible solution S.
3. return S, ObjectiveFunctionValue(S).

Destructor agent D1:
This agent deletes the worst solution in the Memory M1.

82 C.N. Meneses et al. / Discrete Optimization 5 (2008) 74–87

6. Implementation issues

In this section we discuss specific issues pertaining to the implementation of the A-Teams for the MDPS and
MCPS. Since the input files often contain a large number of probes and clones, we devoted a considerable amount of
attention to the speed and efficiency of the implementation. Three algorithms were of particular concern as potential
bottlenecks in the process. The algorithms are, the calculation of |∆S|, the Agent C3 in the MDPS A-Team, and the
Agent C1 in the MCPS A-Team.

In [1] a fast approach to compute |∆S| was proposed. It is as follows: for each fingerprint f compute the number
γ f of clones with fingerprint f . It can be shown that |∆S| =

1
2

∑
f γ f (m − γ f). To find γ f , sort the clones using

fingerprintS(c) as the key. Then, check consecutive clones in order to get the values γ f . Since each component of
fingerprintS(c) is an integer less than or equal to R, it is possible to compute |∆S| in O(mk) time by using the radix
sort algorithm.

In our implementation of |∆S| we use the function qsort that implements the quicksort algorithm. This function is
appropriate to sort large arrays. The computational experiments showed the drastic difference between using the naive
implementation of |∆S| and the one explained above.

We found that when large datafiles containing several thousand clones and probes were processed, the Agent C3 in
the MDPS A-Team used a significant amount of CPU time. The bottleneck in Agent C3 is in the loop that calculates
the number of clone pairs that are distinguished by each probe in a given solution. The loop runs approximately
|C |2 ∗ |S′| iterations per call, where |S′| is equal to the number of probes in the solution.

To speed up the process, we developed a multithreaded preprocessing program in C++ to calculate the fingerprints
and number of clone pairs distinguished by each probe. A thread is a path of execution within an instance of a program.
Generally a program will have one thread (the primary thread) which terminates when the program terminates. More
threads can be created to run multiple paths of execution in parallel. The preprocessing program uses ten threads to
perform the calculations for any given pair of clone/probe datafiles with a selected R-value of 1 or 4. Employing
multiple threads in the preprocessing program significantly reduced the CPU time required to process files. The
output of the program is a file listing the probes and the number of clone pairs distinguished by each probe. The use of
preprocessed files significantly increased the speed of Agent C3 by eliminating the need to run through the bottleneck
loop.

The Agent C1 in the MCPS A-Team is responsible for the generation of initial solutions in Memory M1. To
generate a new solution, Agent C1 chooses the probes that distinguish the greatest number of pairs of clones. As it
builds a solution, each time a new probe is added it determines the set of pairs of clones not yet distinguished by the
solution. It then chooses the probe that distinguishes the greatest number of pairs of clones in that set. The process
continues until the desired number of pairs of clones is distinguished.

The Agent C1 in the MCPS A-Team combines all of the issues that were a concern in the first two cases discussed.
The value of |∆S| must be recalculated every time a probe is added to determine if the solution is acceptable, and the
number of pairs of clones distinguished by the probes must be repeatedly calculated while the set of clones considered
constantly changes as pairs that are distinguished are eliminated. It was necessary to take several measures to speed up
Agent C1. The more efficient implementation of the calculation of |∆S|was used to find |∆S|. The preprocessed probe
files were sorted using the qsort algorithm according to the number of pairs of clones they distinguish. The sorting of
the probes eliminated the need for Agent C1 to search for the initial probe. To avoid recalculating the number of pairs
of clones distinguished for the entire set of probes (which could easily number more than 4000), only subsets of the
probes were worked with at one time. The subset was selected from the top of the sorted list of probes to ensure that
the best candidates were included. The size of the subset, which is generally between twenty and fifty, is input by the
user. These improvements all worked together to allow Agent C1 to run very efficiently. A simple implementation of
the agent would have been infeasible to use.

A dialog-based framework was used to allow for rapid development of the program. Classes from the Microsoft
Foundation Class (MFC) library [2] were utilized for storage of probes, clones and solutions. Individual probes were
stored as CStrings. CStringArrays were used to store input clones, probes and probe solutions, and a CObArray was
used for Memory M1. A random-number generator was used to randomly select the agent to be called at each iteration.

In Section 7.1, we discuss the fact that none of the probe files we had were capable of distinguishing every pair of
clones in a clone file. Since it was not possible to distinguish 100% of the pairs of clones, we added a parameter for
the minimum percentage of pairs to be distinguished. The user enters this value in the MCPS configuration dialog.

C.N. Meneses et al. / Discrete Optimization 5 (2008) 74–87 83

Table 1
Data from [1]

Probe file (no.) Clone file (no.) Max possible |∆S |

candprobes.a.6 (3872) dataset1.clones (1158) 669,309
candprobes.a.7 (6241) dataset1.clones (1158) 669,309
candprobes.a.8 (4209) dataset1.clones (1158) 669,309
candprobes.a.9 (4581) dataset1.clones (1158) 669,307
candprobes.a.10 (4209) dataset1.clones (1158) 669,305
eubacteria5k.a.6 (4064) eubacteria2k.clones (2000) 1,997,759
eubacteria5k.a.6 (4064) eubacteria5k.clones (5000) 12,494,429

Table 2
Semi-random data

Probe length (no.) Clone length (no.) Max possible |∆S |

5 (1009) 1200 (1200) 718,801
6 (4000) 1500 (1200) 718,801
7 (4000) 1500 (1200) 718,801
8 (4000) 2000 (1200) 718,801
9 (4000) 2000 (1200) 718,801
10 (4000) 2000 (1200) 718,801
5,6,7 (4200) 1500 (1200) 718,801
6,7,8,9 (4400) 2000 (2000) 1,998,001
5,6,7,8,9,10 (4200) 2000 (1500) 1,123,501

7. Computational experiments

In this section we present the computational results carried out with the A-Teams described in Sections 4 and 5. In
the next subsection we describe the instances used in the tests. In Sections 7.2 and 7.3 we present the results.

7.1. Instances and test environment

The algorithm used for random-number generation is an implementation of the multiplicative linear congruential
generator [6], with parameters 16,807 (multiplier) and 231

− 1 (prime number).
All tests were run on a Pentium 4 CPU with speed of 3.0 GHz and 1 GB of RAM under MS Windows XP. All

algorithms were implemented in MS Visual C++ 6.0. CPU times were computed using the function clock.
We tested the A-Teams approach on two groups of data. One group of datafiles is detailed in Table 1 and was

obtained from the authors of [1]. It consists of three different clone files. The first (dataset1), contains 1158 small-
subunit ribosomal genes from GenBank (NCBI). The nucleotide sequence of each gene in the file was edited so
that it contains the sequence between two highly conserved primers, but not the primer sequences themselves [1].
Conserved sequences are very similar or identical sequences that appear within various species of an organism or
within the molecules of a given organism. The other two clone files (eubacteria2k and eubacteria5k) contain 2000 and
5000 eubacteria samples respectively. In Table 1, the last extension of the probe filename indicates the length of the
probes contained in the file.

The second group is semi-random data that we generated using a C++ program we developed. The program
randomly generates probes of any length input by the user. It then randomly generates clones with probes from the
probe file embedded as substrings. The semi-random datasets are listed in Table 2.

None of the probe sets were able to distinguish every pair of clones in the clone files. To verify this, we calculated
|∆S| for each clone/probe file pair with the entire probe set as the solution. The values for each dataset are listed in
the last column of Tables 1 and 2.

To date, the only published paper specifically discussing the MDPS and MCPS problems that we are aware of is
Borneman et al. [1]. While we did not acquire the results for all of the datasets and tests discussed in their paper, we
did have access to a limited number of the results for the MDPS problem for dataset1 and the eubacteria5k dataset.

84 C.N. Meneses et al. / Discrete Optimization 5 (2008) 74–87

Table 3
MDPS results (binary distinguishability) on data from [1] after twenty test runs

File Max |∆S | % Min |∆S | Mean Std Dev Avg cpu (s)

candprobes.a.6 669,023 99.96 668,882 668,949.42 41.76 130.98
candprobes.a.7 668,777 99.92 668,311 668,507.20 111.24 132.15
candprobes.a.8 668,503 99.88 667,964 668,215.50 153.42 133.69
candprobes.a.9 668,395 99.86 667,458 667,984.00 240.59 132.87
candprobes.a.10 668,903 99.94 667,135 667,948.60 548.6 133.29
Eubacteria (2k) 1,995,476 99.89 1,994,889 1,995,070.60 268.74 232.10
Eubacteria (5k) 12,486,425 99.94 12,484,723 12,484,740.65 938.84 582.46

The % column gives the percent of the maximum |∆S | to the best possible |∆S | that could be obtained for the given dataset.

We compare our results for MDPS in Section 7.2. We did not have results for comparison for MCPS. In Section 7.3,
we compare our results for the MCPS problem with those given in Table 1 of [1].

To further measure the performance of the A-Teams approach for the MDPS problem, we compared the best |∆S|

obtained from twenty test runs with solutions containing exactly twenty probes to the value of |∆S| obtained when
all candidate probes were included in the solution. That is, we compared the results with twenty probes to the best
possible result that could be obtained for each given dataset. To evaluate our approach for the MCPS problem, we had
the program determine the minimum solution set size that could achieve a minimum cover of 95%. We used the same
approach for both the data from [1] and the semi-random data.

In [7], Rash and Gusfield comment that a weakness of the work in [1] is that they only consider probes of a fixed
length. Our approach is not limited to a fixed probe length. To address this question, we created three semi-random
datasets with probes of varying lengths. The datasets are referenced in Tables 2, 4 and 6 as 5,6,7 and 6,7,8,9 and
5,6,7,8,9,10, indicating the varying lengths of the probes. Each dataset contains an equal number of probes of each
length.

Each probe file was run through the Preprocessing program discussed in Section 6 with the associated clone file
one time before being used in the A-Team algorithms. The Preprocessing program calculates the number of pairs of
clones distinguished by each probe and writes the value to the probe file. The cpu times for preprocessing ranged from
52 s to 380 s.

7.2. Experimental analysis for the MDPS

All of the datasets were tested under the same conditions with the same input parameters for the MDPS problem.
The input parameters were selected by performing preliminary tests to determine those that would produce the best
overall results.

The input parameters are defined as follows. The number of solutions in M1 determines the constant number of
solutions maintained in memory M1. The number of probes per solution is the number of probes each solution in M1
must contain. The error tolerance is defined at the end of Section 4. An iteration refers to a call to a single agent.
At each iteration, an agent is randomly selected and called once. The ratio for agent C3 is the minimum fraction of
pairs that must be distinguished by any probe included in the solution. The distinguishability criteria is defined at the
beginning of Section 2. The CB1 parameter refers to the number of solutions randomly selected in agent CB1. Finally,
the number of improvements allowed for agents I1 and I2 defines the number of times the algorithms are allowed to
attempt improvement of solutions during a single iteration.

The input parameters were: eight solutions in M1; twenty probes per solution; 5% error tolerance; 300 iterations;
ratio for agent C3 equal to 0.80; distinguishability criterion (R) equal to one (binary distinguishability); CB1 parameter
equal to two; agents I1 and I2 allowed ten improvements each; and all agents used.

Twenty tests were run for each dataset and the results are reported in Tables 3 and 4. The Max |∆S| and Min |∆S|

columns give the maximum and minimum |∆S| value obtained over the twenty test runs, these correspond to the best
and worst solutions respectively. The % column gives the percent of the maximum |∆S| to the best possible |∆S|

that could be obtained for the given dataset. The Mean, Std Dev and Avg cpu columns give the mean and standard
deviation of |∆S| and the average cpu time for all twenty test runs.

The results for the MDPS problem performed on the data from Borneman et al. [1] are given in Table 3. The results
are very good. In the worst case, after only 300 iterations and little cpu time, solutions containing twenty probes were

C.N. Meneses et al. / Discrete Optimization 5 (2008) 74–87 85

Table 4
MDPS results (binary distinguishability) on semi-random data after twenty test runs

File Max |∆S | % Min |∆S | Mean Std Dev Avg cpu (s)

5 718,801 100.00 718,799 718,800.50 0.60 109.86
6 718,801 100.00 718,797 718,799.50 1.00 129.73
7 718,752 99.99 718,438 718,639.20 89.26 136.74
8 718,477 99.95 714,888 717,330.00 973.76 168.20
9 718,168 99.91 712,699 715,685.60 1303.74 171.29
10 717,719 99.85 707,790 714,095.00 2825.12 171.22
5,6,7 718,795 99.999 718,776 718,789.75 4.60 136.11
6,7,8,9 1,997,997 99.999 1,997,914 1,997,980.00 18.81 285.18
5,6,7,8,9,10 1,123,494 99.999 1,123,438 1,123,479.00 15.04 210.81

The % column gives the percent of the maximum |∆S | to the best possible |∆S | that could be obtained for the given dataset.

Table 5
MCPS results (binary distinguishability) on data from [1] after twenty test runs

File Min |S| Max |S| Mean Std Dev Avg cpu (s)

candprobes.a.6 5 7 6 0.32 43.19
candprobes.a.7 5 6 5.95 0.22 50.27
candprobes.a.8 6 7 6.65 0.49 51.73
candprobes.a.9 6 12 8.75 2.00 21.83
candprobes.a.10 6 8 7.00 0.33 56.89
Eubacteria (2k) 6 7 6.60 0.50 146.27
Eubacteria (5k) 6 6 6.00 0.00 987.50

Table 6
MCPS results (binary distinguishability) on semi-random data after twenty test runs

File Min |S| Max |S| Mean Std Dev Avg cpu (s)

5 7 7 7.00 0.00 37.35
6 5 6 5.95 0.22 104.22
7 6 6 6.00 0.00 71.39
8 5 5 5.00 0.00 91.18
9 5 5 5.00 0.00 86.94
10 5 5 5.00 0.00 97.88
5,6,7 6 6 6.00 0.00 102.02
6,7,8,9 5 5 5.00 0.00 250.27
5,6,7,8,9,10 6 6 6.00 0.00 95.15

able to distinguish at least 99.86% of the clone pairs distinguished when using all of the candidate probes. It is clear
from the standard deviation that the results were consistent over the twenty test runs. The cpu times are most affected
by the number of clones in the dataset. The times are consistent among datasets with the same number of clones.

In [1], the authors note that they had significantly better results with non-binary distinguishability. We found the
same to be true with the A-Teams for both the MDPS and MCPS problems for all but probes of length 10. As noted,
the results shown in Tables 3–6 are all for binary distinguishability.

As discussed in Section 6, we used the fast implementation to calculate |∆S|. To ensure that we were comparing
results accurately, we ran solutions from [1] through our code to calculate |∆S|. We then compared our results
using those values. For solutions containing twenty probes of length 6, we obtained better results for non-binary
distinguishability in just 350 iterations and 152.6 s of cpu time. Our binary results were within 0.04% of theirs after
500 iterations and 218.9 s. We also compared solutions of twenty probes of lengths 8 and 10 with both binary and
non-binary distinguishability. We found that after 350–500 iterations with cpu times of 174–215 s, we obtained results
with |∆S| within 0.05% of their |∆S| values, with the exception of the non-binary case for probes of length 10 which
was within 0.12%.

86 C.N. Meneses et al. / Discrete Optimization 5 (2008) 74–87

The results were excellent for the semi-random data. Solution sets of twenty probes were able to distinguish as
many pairs of clones as the entire candidate probe set for probes of length 5 and 6. The probes of length 7 and
combined lengths distinguished at least 99.99% of the number of pairs that would be distinguished if the entire
candidate set of probes were used. Note that the standard deviation for the probes of length 7 through 10 steadily
increased. We observed that the algorithm was still improving results at the 300th iteration in these cases, that is, the
improvement had not peaked and leveled off. This resulted in an increase in variability.

We noted that for candidate probe sets containing mixed length probes, the A-Teams for MCPS tended to select
more probes of length 6 in each case. In fact, only probes of length 6 were selected for solutions for the length 5
through 10 dataset. The A-Teams for MDPS however selected probes of multiple lengths, and in the length 5 through
10 dataset it found solutions that contained at least one probe of each length.

7.3. Experimental analysis for the MCPS

All of the datasets were tested under the same conditions with the same input parameters for the MCPS problem.
The input parameters were selected by performing preliminary tests to determine those that would produce the best
overall results.

The input parameters, with the exception of the minimum cover, are defined in the first paragraph of Section 7.2.
The minimum cover refers to the minimum percent of clone pairs to be distinguished by each solution.

The input parameters were: eight solutions in M1; 95% minimum cover; 10 iterations; ratio for agent C3 equal
to 0.45; distinguishability criterion (R) equal to one (binary distinguishability); CB1 parameter equal to two and all
agents used. Twenty tests were run for each dataset and the results are reported in Tables 5 and 6.

In [1], a table is given listing results for optimal and near-optimal probe sets for two of the datasets, dataset 1
and dataset 2. An optimal solution was found with probes of length 5. The authors did not specify what they meant
by “near-optimal”, so here we report solution sizes (|S|) for sets that distinguish at least 99.9% of clone pairs that
can be distinguished using the entire set. We had access to probes of length 6 and 8 for dataset 1, but we did not
have the probes of length 5. For probes of length 6, we found solutions of size 35 for binary and 22 for non-binary
distinguishability; for probes of length 8 we found solutions of size 48 and 20 for binary and non-binary respectively.
These are smaller than the values reported in Table 1 of [1], however we must stress that we do not know the criteria
used to determine if a solution was near-optimal in the other paper.

The A-Teams for MCPS performed very well on the semi-random data. It was able to distinguish at least 95% of all
clone pairs with solutions containing only five to six probes for probes of length 6 and up. Seven probes were required
for probes of length 5. Note that the results were very consistent. The only dataset with a standard deviation greater
than zero was that with probes of length 6, and the standard deviation was only 0.22. The run times in all cases were
short, ranging from 37 to 250 s.

8. Closing remarks

In this paper we have proposed Asynchronous Teams to find near-optimal solutions to probe selection problems.
The A-Teams were implemented and tested on both real and semi-random data with probes of both fixed and
varying lengths. The computational experiments showed that our approach is extremely effective and can find results
comparable to those in [1] in very little computational time. Our approach has some specific advantages over [1].
One advantage is that the A-Teams is able to find near-optimal probe sets containing probes of both fixed and varying
lengths. Another is that the A-Teams approach is dynamic in the sense that new heuristic agents can be added at any
time without requiring any significant changes to the existing code. This allows for continued improvement of the
method with the seamless incorporation of new heuristic algorithms.

Acknowledgments

We gratefully acknowledge the comments provided by the referees which resulted in significant improvements to
the paper. We would like to thank Gianluca Della Vedova for providing us with data and results.

First author was supported in part by the Brazilian Federal Agency for Higher Education (CAPES) — Grant No.
1797-99-9.

C.N. Meneses et al. / Discrete Optimization 5 (2008) 74–87 87

References

[1] J. Borneman, M. Chroback, G.D. Vedova, A. Figueroa, T. Jiang, Probe selection algorithms with applications in the analysis of microbial
communities, Bioinformatics 17 (2001) S39–S48.

[2] Microsoft Corporation, Visual C++ libraries reference, in: Microsoft Developer Network (MSDN), Microsoft Corporation, 2005.
[3] P.S. de Souza, S.N. Talukdar, Asynchronous organizations for multialgorithm problems, in: ACM Symposium on Applied Computing,

Indianapolis, 1993.
[4] F.C. Gomes, C.N. Meneses, A.G. Lima, C.A.S. Oliveira, Asynchronous organizations for solving the point-to-point connection problem,

in: Proceedings of International Conference on Multi-Agent Systems, ICMAS-98, IEEE Computer Society, 1998.
[5] US Dept. of Energy Office of Science. Genomics GTL, Technical Report, Web page: http://doegenomestolife.org/program/goal3.shtml, 2003.
[6] S. Park, K. Miller, Random number generators: Good ones are hard to find, Communications of the ACM 31 (1988) 1192–1201.
[7] S. Rash, D. Gusfield, String barcoding: Uncovering optimal virus signatures, in: G. Meyers, S. Istrail, S. Hannenballi, P. Perzner, M. Waterman

(Eds.), Proceedings of the Sixth Annual International Conference on Computational Biology, 2002, pp. 254–261.
[8] L. Valinsky, G.D. Vedova, A.J. Scupham, S. Alvey, A. Figueroa, B. Yin, R.J. Hartin, M. Chrobak, D.E. Crowley, T. Jiang, J. Borneman,

Analysis of bacterial community composition by oligonucleotide fingerprinting of rRNA genes, Applied and Environmental Microbiology
(2002) 3243–3250.

http://doegenomestolife.org/program/goal3.shtml

	Asynchronous Teams for probe selection problems
	Introduction
	Probe selection problems
	Asynchronous Team
	A-Team for the MDPS
	A-Team for the MCPS
	Implementation issues
	Computational experiments
	Instances and test environment
	Experimental analysis for the MDPS
	Experimental analysis for the MCPS

	Closing remarks
	Acknowledgments
	References

