44 research outputs found

    Kinetics of the exchange reaction between two oxidation states of cerium

    Get PDF
    The radioactive cerium exchange reaction was employed to study the electron transfer reaction in perchloric acid between ceriurm (III) and cerium (IV). In particular, the study was carried out to extend previous investigations, to elucidate further, if possible, the nature of the ionic species that exist in perchloric acid solution, and to examine the various factors determining the rate of exchange

    Particle size and lime addiction on properties of wood-cement composites produced by the method of densification by vibro compaction

    Get PDF
    This paper aimed to evaluate the effects of particle size and the use of lime as a pretreatment of Pinus spp wood particles on the production of wood-cement composites by vibro-compaction densification. Specimens for internal bond and static bending were produced with two different particle sizes: G1, particles that pass through a 4mm screen and were retained at 2mm screen, and G2, particles that pass through a 2mm screen and were retained at 0.84mm screen. The use of lime was also tested in two different methods as pretreatment of wood particles: carbonatation of wood particles before being used in the composite mixture; and addition of hydrated lime directly to the composite mixture. Use of larger particles (G1) presented higher values of internal bond and MOR than composites produced with smaller particles (G2). About the pretreatments, the use of hydrated lime resulted in composites with higher density and better internal bond

    Reliable identification at the species level of Brucella isolates with MALDI-TOF-MS

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genus <it>Brucella </it>contains highly infectious species that are classified as biological threat agents. The timely detection and identification of the microorganism involved is essential for an effective response not only to biological warfare attacks but also to natural outbreaks. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is a rapid method for the analysis of biological samples. The advantages of this method, compared to conventional techniques, are rapidity, cost-effectiveness, accuracy and suitability for the high-throughput identification of bacteria. Discrepancies between taxonomy and genetic relatedness on the species and biovar level complicate the development of detection and identification assays.</p> <p>Results</p> <p>In this study, the accurate identification of <it>Brucella </it>species using MALDI-TOF-MS was achieved by constructing a <it>Brucella </it>reference library based on multilocus variable-number tandem repeat analysis (MLVA) data. By comparing MS-spectra from <it>Brucella </it>species against a custom-made MALDI-TOF-MS reference library, MALDI-TOF-MS could be used as a rapid identification method for <it>Brucella </it>species. In this way, 99.3% of the 152 isolates tested were identified at the species level, and <it>B. suis </it>biovar 1 and 2 were identified at the level of their biovar. This result demonstrates that for <it>Brucella</it>, even minimal genomic differences between these serovars translate to specific proteomic differences.</p> <p>Conclusions</p> <p>MALDI-TOF-MS can be developed into a fast and reliable identification method for genetically highly related species when potential taxonomic and genetic inconsistencies are taken into consideration during the generation of the reference library.</p

    Materials Test-2 LOCA Simulation in the NRU Reactor

    Get PDF
    A simulated loss-of-coolant accident was performed with a full-length test bundle of pressurized water reactor fuel rods. This third experiment of the program produced fuel cladding temperatures exceeding 1033 K (1400°F) for 155 s and resulted in eight ruptured fuel rods. Experiment data and initial results are presented in the form of photographs and graphical summaries

    LOSS-OF-COOLANT ACIDENT SIMULATIONS IN THE NATIONAL RESEARCH UNIVERSAL REACTOR

    Get PDF
    Pressurized water reactor loss-of-coolant accident (LOCA) phenomena are being simulated with a series of experiments in the U-2 loop of the National Research Universal Reactor at Chalk River, Ontario, Canada. The first of these experiments includes up to 45 parametric thermal-hydraulic tests to establish the relationship among the reflood delay time of emergency coolant, the reflooding rate, and the resultant fuel rod cladding peak temperature. Subsequent experiments establish the fuel rod failure characteristics at selected peak cladding temperatures. Fuel rod cladding pressurization simulates high burnup fission gas pressure levels of modern PWRs. This document contains both an experiment overview of the LOCA simulation program and a review of the safety analyses performed by Pacific Northwest Laboratory (PNL) to define the expected operating conditions as well as to evaluate the worst case operating conditions. The primary intent of this document is to supply safety information required by the Chalk River Nuclear Laboratories (CRNL), to establish readiness to proceed from one test phase to the next and to establish the overall safety of the experiment. A hazards review summarizes safety issues, normal operation and three worst case accidents that have been addressed during the development of the experiment plan
    corecore