12 research outputs found

    Fetal Metabolic Adaptations to Cardiovascular Stress in Twin-Twin Transfusion Syndrome

    Get PDF
    Monochorionic-diamniotic twin pregnancies are susceptible to unique complications arising from a single placenta shared by two fetuses. Twin-twin transfusion syndrome (TTTS) is a constellation of disturbances caused by unequal blood flow within the shared placenta giving rise to a major hemodynamic imbalance between the twins. Here, we applied TTTS as a model to uncover fetal metabolic adaptations to cardiovascular stress. We compared untargeted metabolomic analyses of amniotic fluid samples from severe TTTS cases vs. singleton controls. Amniotic fluid metabolites demonstrated alterations in fatty acid, glucose, and steroid hormone metabolism in TTTS. Among TTTS cases, unsupervised principal component analysis revealed two distinct clusters of disease defined by levels of glucose metabolites, amino acids, urea, and redox status. Our results suggest that the human fetal heart can adapt to hemodynamic stress by modulating its glucose metabolism and identify potential differences in the ability of individual fetuses to respond to cardiovascular stress

    STOX1 deficiency is associated with renin-mediated gestational hypertension and placental defects

    Get PDF
    The pathogenesis of preeclampsia and other hypertensive disorders of pregnancy remains poorly defined despite the substantial burden of maternal and neonatal morbidity associated with these conditions. In particular, the role of genetic variants as determinants of disease susceptibility is understudied. Storkhead-box protein 1 (STOX1) was first identified as a preeclampsia risk gene through family-based genetic linkage studies in which loss-of-function variants were proposed to underlie increased preeclampsia susceptibility. We generated a genetic Stox1 loss-of-function mouse model (Stox1 KO) to evaluate whether STOX1 regulates blood pressure in pregnancy. Pregnant Stox1-KO mice developed gestational hypertension evidenced by a significant increase in blood pressure compared with WT by E17.5. While severe renal, placental, or fetal growth abnormalities were not observed, the Stox1-KO phenotype was associated with placental vascular and extracellular matrix abnormalities. Mechanistically, we found that gestational hypertension in Stox1-KO mice resulted from activation of the uteroplacental renin-angiotensin system. This mechanism was supported by showing that treatment of pregnant Stox1-KO mice with an angiotensin II receptor blocker rescued the phenotype. Our study demonstrates the utility of genetic mouse models for uncovering links between genetic variants and effector pathways implicated in the pathogenesis of hypertensive disorders of pregnancy

    Loss of placental growth factor ameliorates maternal hypertension and preeclampsia in mice

    Get PDF
    Preeclampsia remains a clinical challenge due to its poorly understood pathogenesis. A prevailing notion is that increased placental production of soluble fms-like tyrosine kinase-1 (sFlt-1) causes the maternal syndrome by inhibiting proangiogenic placental growth factor (PlGF) and VEGF. However, the significance of PlGF suppression in preeclampsia is uncertain. To test whether preeclampsia results from the imbalance of angiogenic factors reflected by an abnormal sFlt-1/PlGF ratio, we studied PlGF KO (Pgf-/-) mice and noted that the mice did not develop signs or sequelae of preeclampsia despite a marked elevation in circulating sFLT-1. Notably, PlGF KO mice had morphologically distinct placentas, showing an accumulation of junctional zone glycogen. We next considered the role of placental PlGF in an established model of preeclampsia (pregnant catechol-O-methyltransferase-deficient [COMT-deficient] mice) by generating mice with deletions in both the Pgf and Comt genes. Deletion of placental PlGF in the context of COMT loss resulted in a reduction in maternal blood pressure and increased placental glycogen, indicating that loss of PlGF might be protective against the development of preeclampsia. These results identify a role for PlGF in placental development and support a complex model for the pathogenesis of preeclampsia beyond an angiogenic factor imbalance

    Utility of chromosomal microarray in anomalous fetuses

    No full text

    More than grit: growing and sustaining physician-scientists in obstetrics and gynecology

    No full text
    Obstetricians know the statistics-1 out of every 10 babies is born premature; preeclampsia affects 1 in 25 pregnant people; the United States has the highest rate of maternal mortality in the developed world. Yet, physicians and scientists still do not fully understand the biology of normal pregnancy, let alone what causes these complications. Obstetrics and gynecology-trained physician-scientists are uniquely positioned to fill critical knowledge gaps by addressing clinically-relevant problems through fundamental research and interpreting insights from basic and translational studies in the clinical context. Within our specialty, however, physician-scientists are relatively uncommon. Inadequate guidance, lack of support and community, and structural barriers deter fellows and early stage faculty from pursuing the physician-scientist track. One approach to help cultivate the next generation of physician-scientists in obstetrics and gynecology is to demystify the process and address the common barriers that contribute to the attrition of early stage investigators. Here, we review major challenges and propose potential pathways forward in the areas of mentorship, obtaining protected research time and resources, and ensuring diversity, equity, and inclusion, from our perspective as early stage investigators in maternal-fetal medicine. We discuss the roles of early stage investigators and leaders at the institutional and national level in the collective effort to retain and grow our physician-scientist workforce. We aim to provide a framework for early stage investigators initiating their research careers and a starting point for discussion with academic stakeholders. We cannot afford to lose the valuable contributions of talented individuals due to modifiable factors or forfeit our voices as advocates for the issues that impact pregnant populations

    miR-302 Is Required for Timing of Neural Differentiation, Neural Tube Closure, and Embryonic Viability

    Get PDF
    The evolutionarily conserved miR-302 family of microRNAs is expressed during early mammalian embryonic development. Here, we report that deletion of miR-302a-d in mice results in a fully penetrant late embryonic lethal phenotype. Knockout embryos have an anterior neural tube closure defect associated with a thickened neuroepithelium. The neuroepithelium shows increased progenitor proliferation, decreased cell death, and precocious neuronal differentiation. mRNA profiling at multiple time points during neurulation uncovers a complex pattern of changing targets over time. Overexpression of one of these targets, Fgf15, in the neuroepithelium of the chick embryo induces precocious neuronal differentiation. Compound mutants between mir-302 and the related mir-290 locus have a synthetic lethal phenotype prior to neurulation. Our results show that mir-302 helps regulate neurulation by suppressing neural progenitor expansion and precocious differentiation. Furthermore, these results uncover redundant roles for mir-290 and mir-302 early in development

    Fetal metabolic adaptations to cardiovascular stress in twin-twin transfusion syndrome

    No full text
    Summary: Monochorionic-diamniotic twin pregnancies are susceptible to unique complications arising from a single placenta shared by two fetuses. Twin-twin transfusion syndrome (TTTS) is a constellation of disturbances caused by unequal blood flow within the shared placenta giving rise to a major hemodynamic imbalance between the twins. Here, we applied TTTS as a model to uncover fetal metabolic adaptations to cardiovascular stress. We compared untargeted metabolomic analyses of amniotic fluid samples from severe TTTS cases vs. singleton controls. Amniotic fluid metabolites demonstrated alterations in fatty acid, glucose, and steroid hormone metabolism in TTTS. Among TTTS cases, unsupervised principal component analysis revealed two distinct clusters of disease defined by levels of glucose metabolites, amino acids, urea, and redox status. Our results suggest that the human fetal heart can adapt to hemodynamic stress by modulating its glucose metabolism and identify potential differences in the ability of individual fetuses to respond to cardiovascular stress
    corecore