12 research outputs found

    A Data Science Platform to Enable Time-domain Astronomy

    Get PDF
    SkyPortal is an open-source software package designed to discover interesting transients efficiently, manage follow-up, perform characterization, and visualize the results. By enabling fast access to archival and catalog data, crossmatching heterogeneous data streams, and the triggering and monitoring of on-demand observations for further characterization, a SkyPortal-based platform has been operating at scale for >2 yr for the Zwicky Transient Facility Phase II community, with hundreds of users, containing tens of millions of time-domain sources, interacting with dozens of telescopes, and enabling community reporting. While SkyPortal emphasizes rich user experiences across common front-end workflows, recognizing that scientific inquiry is increasingly performed programmatically, SkyPortal also surfaces an extensive and well-documented application programming interface system. From back-end and front-end software to data science analysis tools and visualization frameworks, the SkyPortal design emphasizes the reuse and leveraging of best-in-class approaches, with a strong extensibility ethos. For instance, SkyPortal now leverages ChatGPT large language models to generate and surface source-level human-readable summaries automatically. With the imminent restart of the next generation of gravitational-wave detectors, SkyPortal now also includes dedicated multimessenger features addressing the requirements of rapid multimessenger follow-up: multitelescope management, team/group organizing interfaces, and crossmatching of multimessenger data streams with time-domain optical surveys, with interfaces sufficiently intuitive for newcomers to the field. This paper focuses on the detailed implementations, capabilities, and early science results that establish SkyPortal as a community software package ready to take on the data science challenges and opportunities presented by this next chapter in the multimessenger era

    Target-of-opportunity Observations of Gravitational-wave Events with Vera C. Rubin Observatory

    Get PDF
    The discovery of the electromagnetic counterpart to the binary neutron star (NS) merger GW170817 has opened the era of gravitational-wave multimessenger astronomy. Rapid identification of the optical/infrared kilonova enabled a precise localization of the source, which paved the way to deep multiwavelength follow-up and its myriad of related science results. Fully exploiting this new territory of exploration requires the acquisition of electromagnetic data from samples of NS mergers and other gravitational-wave sources. After GW170817, the frontier is now to map the diversity of kilonova properties and provide more stringent constraints on the Hubble constant, and enable new tests of fundamental physics. The Vera C. Rubin Observatory’s Legacy Survey of Space and Time can play a key role in this field in the 2020s, when an improved network of gravitational-wave detectors is expected to reach a sensitivity that will enable the discovery of a high rate of merger events involving NSs (∼tens per year) out to distances of several hundred megaparsecs. We design comprehensive target-of-opportunity observing strategies for follow-up of gravitational-wave triggers that will make the Rubin Observatory the premier instrument for discovery and early characterization of NS and other compact-object mergers, and yet unknown classes of gravitational-wave events

    Mississippi River low-flows: context, causes, and future projections

    No full text
    The Mississippi River represents a major commercial waterway, and periods of anomalously low river levels disrupt riverine transport. These low-flow events occur periodically, with a recent event in the fall of 2022 slowing barge traffic and generating sharp increases in riverine transportation costs. Here we combine instrumental river gage observations from the lower Mississippi River with output from the Community Earth System Model v2 Large Ensemble (LENS2) to evaluate historical trends and future projections of Mississippi River low streamflow extremes, place the 2022 low-flow event in a broader temporal context, and assess the hydroclimatic mechanisms that mediate the occurrence of low-flows. We show that the severity and duration of low-flow events gradually decreased between 1950 and 1980 coincident with the establishment of artificial reservoirs. In the context of the last ∼70 years, the 2022 low-flow event was less severe in terms of stage or discharge minima than other low-flow events of the mid- and late-20th century. Model simulations from the LENS2 dataset show that, under a moderate-high emissions scenario (SSP3-7.0), the severity and duration of low-flow events is projected to decrease through to the end of the 21st century. Finally, we use the large sample size afforded by the LENS2 dataset to show that low-flow events on the Mississippi River are associated with cold tropical Pacific forcing (i.e. La Niña conditions), providing support for the hypothesis that the El Niño-Southern Oscillation plays a critical role in mediating Mississippi River discharge extremes. We anticipate that our findings describing the trends in and hydroclimatic mechanisms of Mississippi River low-flow occurrence will aid water resource managers to reduce the negative impacts of low water levels on riverine transport

    Target-of-opportunity Observations of Gravitational-wave Events with Vera C. Rubin Observatory

    No full text
    The discovery of the electromagnetic counterpart to the binary neutron star (NS) merger GW170817 has opened the era of gravitational-wave multimessenger astronomy. Rapid identification of the optical/infrared kilonova enabled a precise localization of the source, which paved the way to deep multiwavelength follow-up and its myriad of related science results. Fully exploiting this new territory of exploration requires the acquisition of electromagnetic data from samples of NS mergers and other gravitational-wave sources. After GW170817, the frontier is now to map the diversity of kilonova properties and provide more stringent constraints on the Hubble constant, and enable new tests of fundamental physics. The Vera C. Rubin Observatory’s Legacy Survey of Space and Time can play a key role in this field in the 2020s, when an improved network of gravitational-wave detectors is expected to reach a sensitivity that will enable the discovery of a high rate of merger events involving NSs (∼tens per year) out to distances of several hundred megaparsecs. We design comprehensive target-of-opportunity observing strategies for follow-up of gravitational-wave triggers that will make the Rubin Observatory the premier instrument for discovery and early characterization of NS and other compact-object mergers, and yet unknown classes of gravitational-wave events

    Target-of-opportunity observations of gravitational-wave events with Vera C. Rubin Observatory

    Get PDF
    The discovery of the electromagnetic counterpart to the binary neutron star (NS) merger GW170817 has opened the era of gravitational-wave multimessenger astronomy. Rapid identification of the optical/infrared kilonova enabled a precise localization of the source, which paved the way to deep multiwavelength follow-up and its myriad of related science results. Fully exploiting this new territory of exploration requires the acquisition of electromagnetic data from samples of NS mergers and other gravitational-wave sources. After GW170817, the frontier is now to map the diversity of kilonova properties and provide more stringent constraints on the Hubble constant, and enable new tests of fundamental physics. The Vera C. Rubin Observatory's Legacy Survey of Space and Time can play a key role in this field in the 2020s, when an improved network of gravitational-wave detectors is expected to reach a sensitivity that will enable the discovery of a high rate of merger events involving NSs (∼tens per year) out to distances of several hundred megaparsecs. We design comprehensive target-of-opportunity observing strategies for follow-up of gravitational-wave triggers that will make the Rubin Observatory the premier instrument for discovery and early characterization of NS and other compact-object mergers, and yet unknown classes of gravitational-wave events

    A data science platform to enable time-domain astronomy

    No full text
    International audienceSkyPortal is an open-source platform designed to efficiently discover interesting transients, manage follow-up, perform characterization, and visualize the results, all in one application. By enabling fast access to archival and catalog data, cross-matching heterogeneous data streams, and the triggering and monitoring of on-demand observations for further characterization, SkyPortal has been operating at scale for > 2 yr for the Zwicky Transient Facility Phase II community, with hundreds of users, containing tens of millions of time-domain sources, interacting with dozens of telescopes, and enabling community reporting. While SkyPortal emphasizes rich user experiences (UX) across common frontend workflows, recognizing that scientific inquiry is increasingly performed programmatically, SkyPortal also surfaces an extensive and well-documented API system. From backend and frontend software to data science analysis tools and visualization frameworks, the SkyPortal design emphasizes the re-use and leveraging of best-in-class approaches, with a strong extensibility ethos. For instance, SkyPortal now leverages ChatGPT large-language models (LLMs) to automatically generate and surface source-level human-readable summaries. With the imminent re-start of the next-generation of gravitational wave detectors, SkyPortal now also includes dedicated multi-messenger features addressing the requirements of rapid multi-messenger follow-up: multi-telescope management, team/group organizing interfaces, and cross-matching of multi-messenger data streams with time-domain optical surveys, with interfaces sufficiently intuitive for the newcomers to the field. (abridged

    A data science platform to enable time-domain astronomy

    No full text
    SkyPortal is an open-source platform designed to efficiently discover interesting transients, manage follow-up, perform characterization, and visualize the results, all in one application. By enabling fast access to archival and catalog data, cross-matching heterogeneous data streams, and the triggering and monitoring of on-demand observations for further characterization, SkyPortal has been operating at scale for > 2 yr for the Zwicky Transient Facility Phase II community, with hundreds of users, containing tens of millions of time-domain sources, interacting with dozens of telescopes, and enabling community reporting. While SkyPortal emphasizes rich user experiences (UX) across common frontend workflows, recognizing that scientific inquiry is increasingly performed programmatically, SkyPortal also surfaces an extensive and well-documented API system. From backend and frontend software to data science analysis tools and visualization frameworks, the SkyPortal design emphasizes the re-use and leveraging of best-in-class approaches, with a strong extensibility ethos. For instance, SkyPortal now leverages ChatGPT large-language models (LLMs) to automatically generate and surface source-level human-readable summaries. With the imminent re-start of the next-generation of gravitational wave detectors, SkyPortal now also includes dedicated multi-messenger features addressing the requirements of rapid multi-messenger follow-up: multi-telescope management, team/group organizing interfaces, and cross-matching of multi-messenger data streams with time-domain optical surveys, with interfaces sufficiently intuitive for the newcomers to the field. (abridged

    A data science platform to enable time-domain astronomy

    No full text
    International audienceSkyPortal is an open-source platform designed to efficiently discover interesting transients, manage follow-up, perform characterization, and visualize the results, all in one application. By enabling fast access to archival and catalog data, cross-matching heterogeneous data streams, and the triggering and monitoring of on-demand observations for further characterization, SkyPortal has been operating at scale for > 2 yr for the Zwicky Transient Facility Phase II community, with hundreds of users, containing tens of millions of time-domain sources, interacting with dozens of telescopes, and enabling community reporting. While SkyPortal emphasizes rich user experiences (UX) across common frontend workflows, recognizing that scientific inquiry is increasingly performed programmatically, SkyPortal also surfaces an extensive and well-documented API system. From backend and frontend software to data science analysis tools and visualization frameworks, the SkyPortal design emphasizes the re-use and leveraging of best-in-class approaches, with a strong extensibility ethos. For instance, SkyPortal now leverages ChatGPT large-language models (LLMs) to automatically generate and surface source-level human-readable summaries. With the imminent re-start of the next-generation of gravitational wave detectors, SkyPortal now also includes dedicated multi-messenger features addressing the requirements of rapid multi-messenger follow-up: multi-telescope management, team/group organizing interfaces, and cross-matching of multi-messenger data streams with time-domain optical surveys, with interfaces sufficiently intuitive for the newcomers to the field. (abridged

    A Data Science Platform to Enable Time-domain Astronomy

    No full text
    SkyPortal is an open-source software package designed to discover interesting transients efficiently, manage follow-up, perform characterization, and visualize the results. By enabling fast access to archival and catalog data, crossmatching heterogeneous data streams, and the triggering and monitoring of on-demand observations for further characterization, a SkyPortal -based platform has been operating at scale for >2 yr for the Zwicky Transient Facility Phase II community, with hundreds of users, containing tens of millions of time-domain sources, interacting with dozens of telescopes, and enabling community reporting. While SkyPortal emphasizes rich user experiences across common front-end workflows, recognizing that scientific inquiry is increasingly performed programmatically, SkyPortal also surfaces an extensive and well-documented application programming interface system. From back-end and front-end software to data science analysis tools and visualization frameworks, the SkyPortal design emphasizes the reuse and leveraging of best-in-class approaches, with a strong extensibility ethos. For instance, SkyPortal now leverages ChatGPT large language models to generate and surface source-level human-readable summaries automatically. With the imminent restart of the next generation of gravitational-wave detectors, SkyPortal now also includes dedicated multimessenger features addressing the requirements of rapid multimessenger follow-up: multitelescope management, team/group organizing interfaces, and crossmatching of multimessenger data streams with time-domain optical surveys, with interfaces sufficiently intuitive for newcomers to the field. This paper focuses on the detailed implementations, capabilities, and early science results that establish SkyPortal as a community software package ready to take on the data science challenges and opportunities presented by this next chapter in the multimessenger era
    corecore