203 research outputs found
Prolonged SARS-CoV-2 shedding in a person living with advanced HIV and diffuse large B-cell lymphoma
Serum microRNA array analysis identifies miR-140-3p, miR-33b-3p and miR-671-3p as potential osteoarthritis biomarkers involved in metabolic processes.
Background: MicroRNAs (miRNAs) in circulation have emerged as promising biomarkers. In this study, we aimed to identify a circulating miRNA signature for osteoarthritis (OA) patients and in combination with bioinformatics analysis to evaluate the utility of selected differentially expressed miRNAs in the serum as potential OA biomarkers. Methods: Serum samples were collected from 12 primary OA patients, and 12 healthy individuals were screened using the Agilent Human miRNA Microarray platform interrogating 2549 miRNAs. Receiver Operating Characteristic (ROC) curves were constructed to evaluate the diagnostic performance of the deregulated miRNAs. Expression levels of selected miRNAs were validated by quantitative real-time PCR (qRT-PCR) in all serum and in articular cartilage samples from OA patients (n = 12) and healthy individuals (n = 7). Bioinformatics analysis was used to investigate the involved pathways and target genes for the above miRNAs. Results: We identified 279 differentially expressed miRNAs in the serum of OA patients compared to controls. Two hundred and five miRNAs (73.5%) were upregulated and 74 (26.5%) downregulated. ROC analysis revealed that 77 miRNAs had area under the curve (AUC) > 0.8 and p < 0.05. Bioinformatics analysis in the 77 miRNAs revealed that their target genes were involved in multiple signaling pathways associated with OA, among which FoxO, mTOR, Wnt, pI3K/akt, TGF-β signaling pathways, ECM-receptor interaction, and fatty acid biosynthesis. qRT-PCR validation in seven selected out of the 77 miRNAs revealed 3 significantly downregulated miRNAs (hsa-miR-33b-3p, hsa-miR-671-3p, and hsa-miR-140-3p) in the serum of OA patients, which were in silico predicted to be enriched in pathways involved in metabolic processes. Target-gene analysis of hsa-miR-140-3p, hsa-miR-33b-3p, and hsa-miR-671-3p revealed that InsR and IGFR1 were common targets of all three miRNAs, highlighting their involvement in regulation of metabolic processes that contribute to OA pathology. Hsa-miR-140-3p and hsa-miR-671-3p expression levels were consistently downregulated in articular cartilage of OA patients compared to healthy individuals. Conclusions: A serum miRNA signature was established for the first time using high density resolution miR-arrays in OA patients. We identified a three-miRNA signature, hsa-miR-140-3p, hsa-miR-671-3p, and hsa-miR-33b-3p, in the serum of OA patients, predicted to regulate metabolic processes, which could serve as a potential biomarker for the evaluation of OA risk and progression.Peer reviewedFinal Published versio
Recommended from our members
Syncytiotrophoblast derived extracellular vesicles transfer functional placental miRNAs to primary human endothelial cells
During the pregnancy associated syndrome preeclampsia (PE), there is increased release of placental syncytiotrophoblast extracellular vesicles (STBEVs) and free foetal haemoglobin (HbF) into the maternal circulation. In the present study we investigated the uptake of normal and PE STBEVs by primary human coronary artery endothelial cells (HCAEC) and the effects of free HbF on this uptake. Our results show internalization of STBEVs into primary HCAEC, and transfer of placenta specific miRNAs from STBEVs into the endoplasmic reticulum and mitochondria of these recipient cells. Further, the transferred miRNAs were functional, causing a down regulation of specific target genes, including the PE associated gene fms related tyrosine kinase 1 (FLT1). When co-treating normal STBEVs with HbF, the miRNA deposition is altered from the mitochondria to the ER and the cell membrane becomes ruffled, as was also seen with PE STBEVs. These findings suggest that STBEVs may cause endothelial damage and contribute to the endothelial dysfunction typical for PE. The miRNA mediated effects on gene expression may contribute to the oxidative and endoplasmic reticulum stress described in PE, as well as endothelial reprogramming that may underlay the increased risk of cardiovascular disease reported for women with PE later in life
Water taste and odor (T&O): Challenges, gaps and solutions from a perspective of the WaterTOP network
Aesthetic aspects of drinking water, such as Taste and Odor (T&O), have significant effects on consumer perceptions and acceptability. Solving unpleasant water T&O episodes in water supplies is challenging, since it requires expertise and know-how in diagnosis, evaluation of impacts and implementation of control measures. We present gaps, challenges and perspectives to advance water T&O science and technology, by identifying key areas in sensory and chemical analysis, risk assessment and water treatment, as articulated by WaterTOP (COST Action CA18225), an interdisciplinary European and international network of researchers, experts, and stakeholders
Long-term cyclic persistence in an experimental predator–prey system
Predator–prey cycles rank among the most fundamental concepts in ecology, are predicted by the simplest ecological models and enable, theoretically, the indefinite persistence of predator and prey1,2,3,4. However, it remains an open question for how long cyclic dynamics can be self-sustained in real communities. Field observations have been restricted to a few cycle periods5,6,7,8 and experimental studies indicate that oscillations may be short-lived without external stabilizing factors9,10,11,12,13,14,15,16,17,18,19. Here we performed microcosm experiments with a planktonic predator–prey system and repeatedly observed oscillatory time series of unprecedented length that persisted for up to around 50 cycles or approximately 300 predator generations. The dominant type of dynamics was characterized by regular, coherent oscillations with a nearly constant predator–prey phase difference. Despite constant experimental conditions, we also observed shorter episodes of irregular, non-coherent oscillations without any significant phase relationship. However, the predator–prey system showed a strong tendency to return to the dominant dynamical regime with a defined phase relationship. A mathematical model suggests that stochasticity is probably responsible for the reversible shift from coherent to non-coherent oscillations, a notion that was supported by experiments with external forcing by pulsed nutrient supply. Our findings empirically demonstrate the potential for infinite persistence of predator and prey populations in a cyclic dynamic regime that shows resilience in the presence of stochastic events
hElp3 Directly Modulates the Expression of HSP70 Gene in HeLa Cells via HAT Activity
Human Elongator complex, which plays a key role in transcript elongation in vitro assay, is incredibly similar in either components or function to its yeast counterpart. However, there are only a few studies focusing on its target gene characterization in vivo. We studied the effect of down-regulation of the human elongation protein 3 (hELP3) on the expression of HSP70 through antisense strategy. Transfecting antisense plasmid p1107 into HeLa cells highly suppressed hELP3 expression, and substantially reduced expression of HSP70 mRNA and protein. Furthermore, chromatin immunoprecipitation assay (ChIP Assay) revealed that hElp3 participates in the transcription elongation of HSPA1A in HeLa cells. Finally, complementation and ChIP Assay in yeast showed that hElp3 can not only complement the growth and slow activation of HSP70 (SSA3) gene transcription, but also directly regulates the transcription of SSA3. On the contrary, these functions are lost when the HAT domain is deleted from hElp3. These data suggest that hElp3 can regulate the transcription of HSP70 gene, and the HAT domain of hElp3 is essential for this function. These findings now provide novel insights and evidence of the functions of hELP3 in human cells
Radical SAM enzyme QueE defines a new minimal core fold and metal-dependent mechanism
7-carboxy-7-deazaguanine synthase (QueE) catalyzes a key S-adenosyl-L-methionine (AdoMet)- and Mg[superscript 2+]-dependent radical-mediated ring contraction step, which is common to the biosynthetic pathways of all deazapurine-containing compounds. QueE is a member of the AdoMet radical superfamily, which employs the 5′-deoxyadenosyl radical from reductive cleavage of AdoMet to initiate chemistry. To provide a mechanistic rationale for this elaborate transformation, we present the crystal structure of a QueE along with structures of pre- and post-turnover states. We find that substrate binds perpendicular to the [4Fe-4S]-bound AdoMet, exposing its C6 hydrogen atom for abstraction and generating the binding site for Mg[superscript 2+], which coordinates directly to the substrate. The Burkholderia multivorans structure reported here varies from all other previously characterized members of the AdoMet radical superfamily in that it contains a hypermodified ([β [subscript 6] over α [subscript 3]]) protein core and an expanded cluster-binding motif, CX[subscript 14]CX[subscript 2]C.United States. Dept. of Energy. Office of Biological and Environmental ResearchUnited States. Dept. of Energy. Office of Basic Energy SciencesNational Center for Research Resources (U.S.) (P41RR012408)National Institute of General Medical Sciences (U.S.) (P41GM103473)National Center for Research Resources (U.S.) (5P41RR015301-10)National Institute of General Medical Sciences (U.S.) (8 P41 GM 103403-10)United States. Dept. of Energy (Contract DE-AC02-06CH11357
Mapping senior leaders’ perceptions of the impact of local and national covid-19 closure/lockdown policies on schools and vulnerable young people and those at risk of exclusion. Report of findings
A report of intellectual output 1. Erasmus+ Project Co-MAP: Collaborative, Community mapping of young people's learning experiences during COVID-19.
Mapping senior leaders’ perceptions of the impact of local and national covid-19 closure/lockdown policies on schools and vulnerable young people and those at risk of exclusio
The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species
The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control
- …