9 research outputs found
Nuclear targeting of the serine protease granzyme A (fragmentin-1)
Cytolytic granule-mediated target cell killing is effected in part through synergistic action of the membrane-acting protein perforin and serine proteases such as granzymes A (GrA) or B (GrB). In the present study we examine GrA cellular entry and nuclear uptake in intact mouse myeloid FDC-P1 cells exposed to perforin using confocal laser scanning microscopy, as well as reconstitute GrA nuclear uptake in vitro. GrA alone was found to be able to enter the cytoplasm of intact cells but did not accumulate in nuclei. In the presence of perforin, it specifically accumulated in the cell nuclei, with maximal levels about 2.5 times those in the cytoplasm after 2. 5 hours. In vitro, GrA accumulated in the nucleus and nucleolus maximally to levels that were four- and sixfold, respectively, those in the cytoplasm. In contrast, the active form of the apoptotic cysteine protease CPP32 did not accumulate in nuclei in vitro. Nuclear/nucleolar import of GrA in vitro was independent of ATP and not inhibitable by the non-hydrolyzable GTP analog GTPgammaS, but was dependent on exogenously added cytosol. Importantly, GrA was found to be able to accumulate in the nucleus of semi-intact cells in the presence of the nuclear envelope-permeabilizing detergent CHAPS, implying that the mechanism of nuclear accumulation was through binding to insoluble factors in the nucleus. GrB was found for the first time to be similar in this regard. The results support the contention that GrA and GrB accumulate in the nucleus through a novel nuclear import pathway, and that this is integral to induction of the nuclear changes associated with cytolytic granule-mediated apoptosis.David A. Jans, Lyndall J. Briggs, Patricia Jans, Christopher J. Froelich, Gayathri Parasivam, Sharad Kumar, Vivien R. Sutton and Joseph A. Trapan
‘A sword of Damocles’ : patient and caregiver beliefs, attitudes and perspectives on presymptomatic testing for autosomal dominant polycystic kidney disease: a focus group study
Background and objectives: Presymptomatic testing is available for early diagnosis of hereditary autosomal dominant polycystic kidney disease (ADPKD). However, the complex ethical and psychosocial implications can make decision-making challenging and require an understanding of patients’ values, goals and priorities. This study aims to describe patient and caregiver beliefs and expectations regarding presymptomatic testing for ADPKD.
Design, setting and participants: 154 participants (120 patients and 34 caregivers) aged 18 years and over from eight centres in Australia, France and Korea participated in 17 focus groups. Transcripts were analysed thematically.
Results: We identified five themes: avoiding financial disadvantage (insecurity in the inability to obtain life insurance, limited work opportunities, financial burden); futility in uncertainty (erratic and diverse manifestations of disease limiting utility, taking preventive actions in vain, daunted by perplexity of results, unaware of risk of inheriting ADPKD); lacking autonomy and support in decisions (overwhelmed by ambiguous information, medicalising family planning, family pressures); seizing control of well-being (gaining confidence in early detection, allowing preparation for the future, reassurance in family resilience); and anticipating impact on quality of life (reassured by lack of symptoms, judging value of life with ADPKD).
Conclusions: For patients with ADPKD, presymptomatic testing provides an opportunity to take ownership of their health through family planning and preventive measures. However, these decisions can be wrought with tensions and uncertainty about prognostic implications, and the psychosocial and financial burden of testing. Healthcare professionals should focus on genetic counselling, mental health and providing education to patients’ families to support informed decision-making. Policymakers should consider the cost burden and risk of discrimination when informing government policies. Finally, patients are recommended to focus on self-care from an early age
Novel Vibrio cholerae O139 genes involved in lipopolysaccharide biosynthesis.
The sequence of part of the rfb region of Vibrio cholerae serogroup O139 and the physical map of a 35-kb region of the O139 chromosome have been determined. The O139 rfb region presented contains a number of open reading frames which show similarities to other rfb and capsular biosynthesis genes found in members of the Enterobacteriaceae family and in V. cholerae O1. The cloned and sequenced region can complement the defects in O139 antigen biosynthesis in transposon insertions within the O139 rfb cluster. Linkage is demonstrated among IS1358 of V. cholerae O139, the rfb region, and the recently reported otnA and otnB genes (E. M. Bik, A. E. Bunschoten, R. D. Gouw, and F. R. Mooi, EMBO J. 14:209-216, 1995). In addition, the whole of this region has been linked to the rfaD gene. Furthermore, determination of the sequence flanking IS1358 has revealed homology to other rfb-like genes. The exact site of insertion with respect to rfaD is defined for the novel DNAs of both the Bengal and the Argentinian O139 isolates
Generalized epilepsy with febrile seizures plus: Mutation of the sodium channel subunit SCN1B
Copyright © 2002 American Academy of NeurologyGeneralized epilepsy with febrile seizures plus (GEFS(+)) is an important childhood genetic epilepsy syndrome with heterogeneous phenotypes, including febrile seizures (FS) and generalized epilepsies of variable severity. Forty unrelated GEFS(+) and FS patients were screened for mutations in the sodium channel beta-subunits SCN1B and SCN2B, and the second GEFS(+) family with an SCN1B mutation is described here. The family had 19 affected individuals: 16 with typical GEFS(+) phenotypes and three with other epilepsy phenotypes. Site-specific mutation within SCN1B remains a rare cause of GEFS(+), and the authors found no evidence to implicate SCN2B in this syndrome.http://www.neurology.org/cgi/content/abstract/58/9/142
Identification of multiple proteins expressed in murine embryos as binding partners for the WW domains of the ubiquitin-protein ligase Nedd4.
Nedd4 is a member of a growing family of ubiquitin-protein ligases which consist of a lipid-binding domain, two to four WW domains and a C-terminal ubiquitin-protein ligase domain. The Nedd4 mRNA levels are developmentally regulated and Nedd4 protein is highly expressed in many mouse embryonic tissues. In this study we have used a far-Western screen to identify embryonic proteins that interact with the WW domains in mouse Nedd4. We report here identification of eight Nedd4 WW-domain-interacting proteins from mouse embryonic cDNA expression libraries. Two of the proteins are novel, while two have been identified previously as ligands for a WW domain. All of these proteins contain one or more PY motifs. In seven of the eight proteins, these PY motifs are necessary for their interaction with the WW domains of Nedd4. Using site-directed mutagenesis, and by using individual WW domains of Nedd4 as probes for far-Western analysis, we show that the three WW domains in Nedd4 interact with varying affinities with the PY motifs present in various Nedd4-binding proteins. These results provide evidence that Nedd4 can potentially interact with multiple proteins, possibly simultaneously, through its WW domains
All three WW domains of murine Nedd4 are involved in the regulation of epithelial sodium channels by intracellular Na(+)
The amiloride-sensitive epithelial sodium channel (ENaC) plays a critical role in fluid and electrolyte homeostasis and consists of alpha, beta, and gamma subunits. The carboxyl terminus of each ENaC subunit contains a PPxY motif which is necessary for interaction with the WW domains of the ubiquitin-protein ligase, Nedd4. Disruption of this interaction, as in Liddle's syndrome where mutations delete or alter the PY motif of either the beta or gamma subunits, results in increased ENaC activity. We have recently shown using the whole-cell patch clamp technique that Nedd4 mediates the ubiquitin-dependent down-regulation of Na+ channel activity in response to increased intracellular Na+. In this paper, we demonstrate that WW domains 2 and 3 bind alpha-, beta-, and gamma-ENaC with varying degrees of affinity, whereas WW domain 1 does not bind to any of the subunits. We further show using whole-cell patch clamp techniques that Nedd4-mediated down-regulation of ENaC in mouse mandibular duct cells involves binding of the WW domains of Nedd4 to three distinct sites. We propose that Nedd4-mediated down-regulation of Na+ channels involves the binding of WW domains 2 and 3 to the Na+ channel and of WW domain 1 to an unknown associated protein.Kieran F. Harvey, Anuwat Dinudom, Permsak Komwatana, Corina N. Jolliffe, Margot L. Day, Gayathri Parasivam, David I. Cook and Sharad Kuma
X-linked myoclonic epilepsy with spasticity and intellectual disability - Mutation in the homeobox gene ARX
ObjectiveTo describe a new syndrome of X-linked myoclonic epilepsy with generalized spasticity and intellectual disability (XMESID) and identify the gene defect underlying this disorder.MethodsThe authors studied a family in which six boys over two generations had intractable seizures using a validated seizure questionnaire, clinical examination, and EEG studies. Previous records and investigations were obtained. Information on seizure disorders was obtained on 271 members of the extended family. Molecular genetic analysis included linkage studies and mutational analysis using a positional candidate gene approach.ResultsAll six affected boys had myoclonic seizures and TCS; two had infantile spasms, but only one had hypsarrhythmia. EEG studies show diffuse background slowing with slow generalized spike wave activity. All affected boys had moderate to profound intellectual disability. Hyperreflexia was observed in obligate carrier women. A late-onset progressive spastic ataxia in the matriarch raises the possibility of late clinical manifestations in obligate carriers. The disorder was mapped to Xp11.2-22.2 with a maximum lod score of 1.8. As recently reported, a missense mutation (1058C>T/P353L) was identified within the homeodomain of the novel human Aristaless related homeobox gene (ARX).ConclusionsXMESID is a rare X-linked recessive myoclonic epilepsy with spasticity and intellectual disability in boys. Hyperreflexia is found in carrier women. XMESID is associated with a missense mutation in ARX. This disorder is allelic with X-linked infantile spasms (ISSX; MIM 308350) where polyalanine tract expansions are the commonly observed molecular defect. Mutations of ARX are associated with a wide range of phenotypes; functional studies in the future may lend insights to the neurobiology of myoclonic seizures and infantile spasms.http://www.neurology.org/cgi/content/abstract/59/3/34
X-linked myoclonic epilepsy with spasticity and intellectual disability - Mutation in the homeobox gene ARX
Objective: To describe a new syndrome of X-linked myoclonic epilepsy with generalized spasticity and intellectual disability (XMESID) and identify the gene defect underlying this disorder. Methods: The authors studied a family in which six boys over two generations had intractable seizures using a validated seizure questionnaire, clinical examination, and EEG studies. Previous records and investigations were obtained. Information on seizure disorders was obtained on 271 members of the extended family. Molecular genetic analysis included linkage studies and mutational analysis using a positional candidate gene approach. Results: All six affected boys had myoclonic seizures and TCS; two had infantile spasms, but only one had hypsarrhythmia. EEG studies show diffuse background slowing with slow generalized spike wave activity. All affected boys had moderate to profound intellectual disability. Hyperreflexia was observed in obligate carrier women. A late-onset progressive spastic ataxia in the matriarch raises the possibility of late clinical manifestations in obligate carriers. The disorder was mapped to Xp11.2-22.2 with a maximum lod score of 1.8. As recently reported, a missense mutation (1058C>T/P353L) was identified within the homeodomain of the novel human Aristaless related homeobox gene (ARX). Conclusions: XMESID is a rare X-linked recessive myoclonic epilepsy with spasticity and intellectual disability in boys. Hyperreflexia is found in carrier women. XMESID is associated with a missense mutation in ARX. This disorder is allelic with X-linked infantile spasms (ISSX; MIM 308350) where polyalanine tract expansions are the commonly observed molecular defect. Mutations of ARX are associated with a wide range of phenotypes; functional studies in the future may lend insights to the neurobiology of myoclonic seizures and infantile spasms
Paediatric genomic testing: Navigating medicare rebatable genomic testing
Genomic testing for a genetic diagnosis is becoming standard of care for many children, especially those with a syndromal intellectual disability. While previously this type of specialised testing was performed mainly by clinical genetics teams, it is increasingly being 'mainstreamed' into standard paediatric care. With the introduction of a new Medicare rebate for genomic testing in May 2020, this type of testing is now available for paediatricians to order, in consultation with clinical genetics. Children must be aged less than 10 years with facial dysmorphism and multiple congenital abnormalities or have global developmental delay or moderate to severe intellectual disability. This rebate should increase the likelihood of a genetic diagnosis, with accompanying benefits for patient management, reproductive planning and diagnostic certainty. Similar to the introduction of chromosomal microarray into mainstream paediatrics, this genomic testing will increase the number of genetic diagnoses, however, will also yield more variants of uncertain significance, incidental findings, and negative results. This paper aims to guide paediatricians through the process of genomic testing, and represents the combined expertise of educators, clinical geneticists, paediatricians and genomic pathologists around Australia. Its purpose is to help paediatricians navigate choosing the right genomic test, consenting patients and understanding the possible outcomes of testing