40 research outputs found

    Klein tunneling through the trapezoidal potential barrier in graphene: conductance and shot noise

    Full text link
    When a single-layer graphene sheet is contacted with metallic electrodes, tunnel barriers are formed as a result of the doping of graphene by the metal in the contact region. If the Fermi energy level is modulated by a gate voltage, the phenomenon of Klein tunneling results in specific features in the conductance and noise. Here we obtain analytically exact solutions for the transmission and reflection probability amplitudes using a trapezoidal potential barrier, allowing us to calculate the differential conductance and the Fano factor for a graphene sheet in the ballistic regime. We put in evidence an unexpected global symmetry - the transmission probability is the same for energies symmetric with respect to half of the barrier height. We outline a proposal for the experimental verification of these ideas using realistic sample parameters.Comment: 18 pages, 9 figure

    Listening to the quantum vacuum: A perspective on the dynamical Casimir effect

    Get PDF
    Modern quantum field theory has offered us a very intriguing picture of empty space. The vacuum state is no longer an inert, motionless state. We are instead dealing with an entity teeming with fluctuations that continuously produce virtual particles popping in and out of existence. The dynamical Casimir effect is a paradigmatic phenomenon, whereby these particles are converted into real particles (photons) by changing the boundary conditions of the field. It was predicted 50 years ago by Gerald T. Moore and it took more than 40 years until the first experimental verification

    Observation of the two-photon Landau-Zener-St\"uckelberg-Majorana effect

    Full text link
    Second-order processes introduce nonlinearities in quantum dynamics, unlocking a totally unexpected area of control operations. Here we show that the well-known Landau-Zener-St\"uckelberg-Majorana (LZSM) transition can be driven by a virtual process in a three-level system whereby two photons from a drive with linearly-modulated phase create excitations onto the third level while avoiding completely the first level. We implement this experimentally in a transmon qubit achieving a population transfer of 98%98\%, limited by relaxation. We predict and observe experimentally the doubling of the LZSM velocity. The observation of this effect is made possible by the nearly-exact cancellation of the two-photon ac Stark shift when the third transition is included. Furthermore, we demonstrate considerable robustness to offsets in frequency and amplitude, both in theory and experimentally

    Fault-tolerant one-way noiseless amplification for microwave bosonic quantum information processing

    Full text link
    Microwave quantum information networks require reliable transmission of single photon propagating modes over lossy channels. In this article we propose a microwave noise-less linear amplifier (NLA) suitable to circumvent the losses incurred by a flying photon undergoing an amplitude damping channel (ADC). The proposed model is constructed by engineering a simple one-dimensional four node cluster state. Contrary to conventional NLAs based on quantum scissors (QS), single photon amplification is realized without the need for photon number resolving detectors (PNRDs). Entanglement between nodes comprising the device's cluster is achieved by means of a controlled phase gate (CPHASE). Furthermore, photon measurements are implemented by quantum non demolition detectors (QNDs), which are currently available as a part of circuit quantum electrodynamics (cQED) toolbox. We analyze the performance of our device practically by considering detection inefficiency and dark count probability. We further examine the potential usage of our device in low power quantum sensing applications and remote secret key generation (SKG). Specifically, we demonstrate the device's ability to prepare loss-free resources offline, and its capacity to overcome the repeater-less bound of SKG. We compare the performance of our device against a QS-NLA for the aforementioned applications, and highlight explicitly the operating conditions under which our device can outperform a QS-NLA. The proposed device is also suitable for applications in the optical domain

    Coherent interaction-free detection of noise

    Full text link
    Noise is an important concept and its measurement and characterization has been a flourishing area of research in contemporary mesoscopic physics. Here we propose interaction-free measurements as a noise-detection technique, exploring two conceptually different schemes: the coherent and the projective realizations. These detectors consist of a qutrit whose second transition is coupled to a resonant oscillatory field that may have noise in amplitude or phase. For comparison, we consider a more standard detector previously discussed in this context - a qubit coupled in a similar way to the noise source. We find that the qutrit scheme offers clear advantages, allowing precise detection and characterization of the noise, while the qubit does not. Finally, we study the signature of noise correlations in the detector's signal.Comment: 10 pages, 5 figure

    Coherent interaction-free detection of microwave pulses with a superconducting circuit

    Full text link
    We show that it is possible to ascertain the presence of a microwave pulse resonant with the second transition of a superconducting transmon circuit, while at the same time avoiding to excite the device onto the third level. In contrast to standard interaction-free measurement setups, where the dynamics involves a series of projection operations, our protocol employs a fully coherent evolution, which results, surprisingly, in a higher efficiency. Experimentally, this is done by using a series of Ramsey microwave pulses coupled into the first transition and monitoring the ground-state population.Comment: 19 pages, 17 figures. Comments are welcome

    Theory of coherent interaction-free detection of pulses

    Full text link
    Quantum physics allows an object to be detected even in the absence of photon absorption, by the use of so-called interaction-free measurements. We provide a formulation of this protocol using a three-level system, where the object to be detected is a pulse coupled resonantly into the second transition. In the original formulation of interaction-free measurements, the absorption is associated with a projection operator onto the third state. We perform an in-depth analytical and numerical analysis of the coherent protocol, where coherent interaction between the object and the detector replaces the projective operators, resulting in higher detection efficiencies. We provide approximate asymptotic analytical results to support this finding. We find that our protocol reaches the Heisenberg limit when evaluating the Fisher information at small strengths of the pulses we aim to detect -- in contrast to the projective protocol that can only reach the standard quantum limit. We also demonstrate that the coherent protocol remains remarkably robust under errors such as pulse rotation phases and strengths, the effect of relaxation rates and detunings, as well as different thermalized initial states.Comment: 17 pages, 13 figure

    Microwave photon detection at parametric criticality

    Full text link
    The detection of microwave fields at single-photon power levels is a much sought-after technology, with practical applications in nanoelectronics and quantum information science. Here we demonstrate a simple yet powerful criticality-enhanced method of microwave photon detection by operating a magnetic-field tunable Kerr Josephson parametric amplifier near a first-order quantum phase transition. We obtain a 73% efficiency and a dark-count rate of 167 kHz, corresponding to a responsivity of 1.3×1017 W11.3 \times 10^{17}~\mathrm{W}^{-1} and noise-equivalent power of 3.28 zW/Hz\sqrt{\rm Hz}. We verify the single-photon operation by extracting the Poissonian statistics of a coherent probe signal

    Bath-Induced Collective Phenomena on Superconducting Qubits : Synchronization, Subradiance, and Entanglement Generation

    Get PDF
    A common environment acting on a pair of qubits gives rise to a plethora of different phenomena, such as the generation of qubit-qubit entanglement, quantum synchronization, and subradiance. Here, time-independent figures of merit for entanglement generation, quantum synchronization, and subradiance are defined, and an extensive analytical and numerical study of their dependence on model parameters is performed. A recently proposed measure of the collectiveness of the dynamics driven by the bath is also addressed, and it is found that it almost perfectly witnesses the behavior of entanglement generation. The results show that synchronization and subradiance can be employed as reliable local signatures of an entangling common-bath in a general scenario. Finally, an experimental implementation of the model based on two transmon qubits capacitively coupled to a common resistor is proposed, which provides a versatile quantum simulation platform of the open system in any regime.Peer reviewe
    corecore