146 research outputs found

    DFCV: A Novel Approach for Message Dissemination in Connected Vehicles using Dynamic Fog

    Full text link
    Vehicular Ad-hoc Network (VANET) has emerged as a promising solution for enhancing road safety. Routing of messages in VANET is challenging due to packet delays arising from high mobility of vehicles, frequently changing topology, and high density of vehicles, leading to frequent route breakages and packet losses. Previous researchers have used either mobility in vehicular fog computing or cloud computing to solve the routing issue, but they suffer from large packet delays and frequent packet losses. We propose Dynamic Fog for Connected Vehicles (DFCV), a fog computing based scheme which dynamically creates, increments and destroys fog nodes depending on the communication needs. The novelty of DFCV lies in providing lower delays and guaranteed message delivery at high vehicular densities. Simulations were conducted using hybrid simulation consisting of ns-2, SUMO, and Cloudsim. Results show that DFCV ensures efficient resource utilization, lower packet delays and losses at high vehicle densities

    Performance Analysis of Message Dissemination Techniques in VANET using Fog Computing

    Get PDF
    Vehicular Ad-hoc Networks (VANET) is a derived subclass of Mobile Ad-hoc Networks (MANET) with vehicles as mobile nodes. VANET facilitate vehicles to share safety and non-safety information through messages. Safety information includes road accidents, natural hazards, roadblocks, etc. Non-safety information includes tolling information, traveler information, etc. The main goal behind sharing this information is to enhance road safety and reduce road accidents by alerting the driver about the unexpected hazards. However, routing of messages in VANET is challenging due to packet delays arising from high mobility of vehicles, frequently changing topology and high density of vehicles, leading to frequent route breakages and packet losses. This report summarizes the performance analysis of safety and non-safety message dissemination techniques in VANET based on the fog computing technique. Three main metrics to improve the performance of message dissemination are: 1) delay, 2) probability of message delivery, and 3) throughput. Analysis of such metrics plays an important role to improve the performance of existing message dissemination techniques. Simulations are usually conducted based on the metrics using ns-2 and Java discrete event simulator. The above three performance metrics and results published in literature help one to understand and increase the performance of various message dissemination techniques in a VANET environment.Ye

    Hybrid-Vehcloud: An Obstacle Shadowing Approach for VANETs in Urban Environment

    Full text link
    Routing of messages in Vehicular Ad-hoc Networks (VANETs) is challenging due to obstacle shadowing regions with high vehicle densities, which leads to frequent disconnection problems and blocks radio wave propagation between vehicles. Previous researchers used multi-hop, vehicular cloud or roadside infrastructures to solve the routing issue among the vehicles, but they suffer from significant packet delays and frequent packet losses arising from obstacle shadowing. We proposed a vehicular cloud based hybrid technique called Hybrid-Vehcloud to disseminate messages in obstacle shadowing regions, and multi-hop technique to disseminate messages in non-obstacle shadowing regions. The novelty of our approach lies in the fact that our proposed technique dynamically adapts between obstacle shadowing and non-obstacle shadowing regions. Simulation based performance analysis of Hybrid-Vehcloud showed improved performance over Cloud-assisted Message Downlink Dissemination Scheme (CMDS), Cross-Layer Broadcast Protocol (CLBP) and Cloud-VANET schemes at high vehicle densities

    Misbehavior aware on-demand intrusion detection system to enhance security in VANETs with efficient rogue nodes detection and prevention techniques

    Get PDF
    Vehicular ad-hoc networks (VANETs) facilitate vehicles to broadcast beacon messages to ensure road safety. The goal behind sharing the information through beacon messages is to disseminate network state or emergency information. The exchange of information is susceptible to security attacks of different kinds. Amongst various problems to be solved in VANETs is the issue of rogue nodes and their impact on the network. Rogue nodes are malicious vehicles that are vicious to cause severe damage to the network by modifying or altering false data in beacon messages that could lead to catastrophic consequences like trapping a group of vehicles, road accidents, vehicle collisions, etc. This thesis discusses the problems associated with the security VANETs in the presence of rogue nodes. We proposed three novel intrusion detection frameworks to detect the rogue nodes responsible for false information, Sybil, and platoon control maneuver attacks only by analyzing and comparing the beacon messages broadcast over the network. The novelty of our frameworks lies in containing network damage and securing VANETs from the harmful impact of rogue nodes. The proposed frameworks are simulated using SUMO, OMNET++, and VENTOS, and the results obtained have been presented, discussed, and compared to existing frameworks. Results show that the developed methods improve the systems’ performance compared to existing methods even when the number of rogue nodes increases in the region

    Survey on Congestion Detection and Control in Connected Vehicles

    Full text link
    The dynamic nature of vehicular ad hoc network (VANET) induced by frequent topology changes and node mobility, imposes critical challenges for vehicular communications. Aggravated by the high volume of information dissemination among vehicles over limited bandwidth, the topological dynamics of VANET causes congestion in the communication channel, which is the primary cause of problems such as message drop, delay, and degraded quality of service. To mitigate these problems, congestion detection, and control techniques are needed to be incorporated in a vehicular network. Congestion control approaches can be either open-loop or closed loop based on pre-congestion or post congestion strategies. We present a general architecture of vehicular communication in urban and highway environment as well as a state-of-the-art survey of recent congestion detection and control techniques. We also identify the drawbacks of existing approaches and classify them according to different hierarchical schemes. Through an extensive literature review, we recommend solution approaches and future directions for handling congestion in vehicular communications

    To establish normative data using the Jebsen Taylor hand function test (JHFT) for normal, ethnically diverse South Africans aged between 20 and 59 years

    Get PDF
    The use of outcome measures by occupational therapists to establish the effectiveness of treatment is important. The Jebsen-Taylor Hand Function Test (JHFT) was identified as a standardised assessment suitable for the evaluation of outcomes related to the treatment of hand function. This study established norms for this test on 120 normal, ethnically diverse South Africans between the ages of 20 and 59 years. Statistically significant differences were found between the original norms published by Jebsen et al (1) and the South African sample for males and females, dominant and non-dominant hands and ethnic groupings. It is postulated that gender and cultural factors may influence the speed with which different groups complete functional tasks and these must be factored in when using the JHFT as an outcome measure in South Africa. The test appears to have limited application as a norm referenced test in South Africa, but may be valuable in determining progress in therapy or research

    FUZZY LOGIC BASED HYBRID ENERGY STORAGE SYSTEM FOR WIND GENERATING PLANT

    Get PDF
    This paper discusses a hybrid energy storage system for isolated operation of permanent magnet synchronous generator based wind turbine. The hybrid energy storage system consisting of battery storage and a super capacitor, the battery and super capacitor provide high energy and power requirements respectively. The super capacitor ensures a healthy operation of the battery storage by preventing it to operate in high Depth of Discharge  regions and to operate at low frequency power regions. The system provides the solution for power wasted by the turbine when the battery is in full charge condition .A fuzzy logic is proposed for the hybrid energy storage with a view to improve the performance of the battery storage and to improve the system stability. The simulation results using MATLAB simulink of the proposed method is capable of achieving voltage and frequency regulation, effective management of the hybrid storage system without dump load and maximum power extraction from wind

    GSTR: Secure Multi-hop Message Dissemination in Connected Vehicles using Social Trust Model

    Full text link
    The emergence of connected vehicles paradigm has made secure communication a key concern amongst the connected vehicles. Communication between the vehicles and Road Side Units (RSUs) is critical to disseminate message among the vehicles. We focus on secure message transmission in connected vehicles using multi_hop social networks environment to deliver the message with varying trustworthiness. We proposed a Geographic Social Trust Routing (GSTR) approach; messages are propagated using multiple hops and by considering the various available users in the vehicular network. GSTR is proposed in an application perspective with an assumption that the users are socially connected. The users are selected based on trustworthiness as defined by social connectivity. The route to send a message is calculated based on the highest trust level of each node by using the nodes social network connections along the path in the network. GSTR determines the shortest route using the trusted nodes along the route for message dissemination. GSTR is made delay tolerant by introducing message storage in the cloud if a trustworthy node is unavailable to deliver the message. We compared the proposed approach with Geographic and Traffic Load based Routing (GTLR), Greedy Perimeter Stateless Routing (GPSR), Trust-based GPSR (T_GPSR). The performance results obtained show that GSTR ensures efficient resource utilization, lower packet losses at high vehicle densities
    • …
    corecore