3,729 research outputs found

    Agent communication method in cooperative environment based on the artificial neural networks

    Get PDF
    The problem of communication between cooperating agents in multiagent environments is considered in this paper. An algorithm is proposed that is based in reinforcement learning and recurrent neural networks. Main idea behind the algorithm is to use an additional recurrent network that translates information from internal state of one agent to internal state of another agent. Experimental evaluation is performed on model environment. Experimental results have shown that proposed method is potentially useful but requires additional investigation. Π’ Ρ€ΠΎΠ±ΠΎΡ‚Ρ– Ρ€ΠΎΠ·Π³Π»ΡΠ΄Π°Ρ”Ρ‚ΡŒΡΡ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° ΠΊΠΎΠΌΡƒΠ½Ρ–ΠΊΠ°Ρ†Ρ–Ρ— ΠΊΠΎΠΎΠΏΠ΅Ρ€ΡƒΡŽΡ‡ΠΈΡ… Π°Π³Π΅Π½Ρ‚Ρ–Π² Ρƒ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠ°Π³Π΅Π½Ρ‚Π½ΠΈΡ… сСрСдовищах. Π—Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ Π½Π° основі ΠΏΡ–Π΄Ρ…ΠΎΠ΄Ρ–Π² навчання Π· підкріплСнням Π· використанням Ρ€Π΅ΠΊΡƒΡ€Π΅Π½Ρ‚Π½ΠΈΡ… Π½Π΅ΠΉΡ€ΠΎΠ½Π½ΠΈΡ… ΠΌΠ΅Ρ€Π΅ΠΆ. Π“ΠΎΠ»ΠΎΠ²Π½Π° ідСя Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡƒ – Ρ†Π΅ використання Π΄ΠΎΠ΄Π°Ρ‚ΠΊΠΎΠ²ΠΎΡ— Ρ€Π΅ΠΊΡƒΡ€Π΅Π½Ρ‚Π½ΠΎΡ— ΠΌΠ΅Ρ€Π΅ΠΆΡ–, яка Π²ΠΈΠΊΠΎΠ½ΡƒΡ” ΠΎΠ±ΠΌΡ–Π½ Ρ–Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†Ρ–Ρ”ΡŽ ΠΌΡ–ΠΆ Π²Π½ΡƒΡ‚Ρ€Ρ–ΡˆΠ½Ρ–ΠΌΠΈ станами Π΄Π²ΠΎΡ… Π°Π³Π΅Π½Ρ‚Ρ–Π² ΠΏΡ–Π΄ час ΠΊΠΎΠΌΡƒΠ½Ρ–ΠΊΠ°Ρ†Ρ–Ρ—. ΠžΠ±Ρ€Π°Π½ΠΈΠΉ ΠΏΡ–Π΄Ρ…Ρ–Π΄ заснований Π½Π° застосуванні Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡƒ A3C, Ρ€Π΅ΠΊΡƒΡ€Π΅Π½Ρ‚Π½ΠΎΡ— Π½Π΅ΠΉΡ€ΠΎΠ½Π½ΠΎΡ— ΠΌΠ΅Ρ€Π΅ΠΆΡ– Long Short-Term Memory (LSTM) для кСрування Π°Π³Π΅Π½Ρ‚ΠΎΠΌ Ρ‚Π° Π΄ΠΎΠ΄Π°Ρ‚ΠΊΠΎΠ²ΠΎΡ— Ρ€Π΅ΠΊΡƒΡ€Π΅Π½Ρ‚Π½ΠΎΡ— ΠΌΠ΅Ρ€Π΅ΠΆΡ– (ΠΌΠ΅Ρ€Π΅ΠΆΡ– ΠΊΠΎΠΌΡƒΠ½Ρ–ΠΊΠ°Ρ†Ρ–Ρ—). ДослідТСно Π΄Π²Π° Π²Π°Ρ€Ρ–Π°Π½Ρ‚Π° Π°Ρ€Ρ…Ρ–Ρ‚Π΅ΠΊΡ‚ΡƒΡ€ΠΈ Π½Π΅ΠΉΡ€ΠΎΠ½Π½ΠΎΡ— ΠΌΠ΅Ρ€Π΅ΠΆΡ–. Π—Π° ΠΏΠ΅Ρ€ΡˆΠΎΡŽ Π²Π΅Ρ€ΡΡ–Ρ”ΡŽ Π°Π³Π΅Π½Ρ‚ΠΈ спочатку Β«ΡΠΏΡ–Π»ΠΊΡƒΡŽΡ‚ΡŒΡΡΒ», Π° ΠΏΠΎΡ‚Ρ–ΠΌ Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡ”Ρ‚ΡŒΡΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Ρƒ якості Π΄ΠΎΠ΄Π°Ρ‚ΠΊΠΎΠ²ΠΈΡ… Π΄Π°Π½ΠΈΡ… ΠΏΡ€ΠΎ сСрСдовищС. Π”Ρ€ΡƒΠ³Π° вСрсія спочатку Π°Π½Π°Π»Ρ–Π·ΡƒΡ” Π΄Π°Π½Ρ– ΠΏΡ€ΠΎ сСрСдовищС, Π° ΠΏΠΎΡ‚Ρ–ΠΌ Ρ€Π΅Π°Π»Ρ–Π·ΡƒΡ” «спілкування» Π°Π³Π΅Π½Ρ‚Ρ–Π², ΠΎΠ±ΠΌΡ–Π½ΡŽΡŽΡ‡ΠΈΡΡŒ Π²ΠΈΡΠΎΠΊΠΎΡ€Ρ–Π²Π½Π΅Π²ΠΎΡŽ Ρ–Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†Ρ–Ρ”ΡŽ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρƒ ΠΎΡ†Ρ–Π½ΠΊΡƒ Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡƒ Π½Π° ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Ρ– ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½ΠΎΡ— Π·Π°Π΄Π°Ρ‡Ρ–. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ СкспСримСнту Π΄ΠΎΠ²Π΅Π»ΠΈ, Ρ‰ΠΎ Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΡ–Π΄Ρ…Ρ–Π΄ ΠΏΠΎΠΊΡ€Π°Ρ‰ΡƒΡ” Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ ΠΊΠΎΠΎΠΏΠ΅Ρ€ΡƒΡŽΡ‡ΠΈΡ… Π°Π³Π΅Π½Ρ‚Ρ–Π². ΠŸΠ΅Ρ€Π΅Π²Π°Π³ΠΎΡŽ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡƒ Ρ” Ρ‚Π΅, Ρ‰ΠΎ Π²Ρ–Π½ Π½Π΅ ΠΏΠΎΡ‚Ρ€Π΅Π±ΡƒΡ” наявності складних Ρ‚Π° структурованих ΠΎΠ±Ρ‡ΠΈΡΠ»ΡŽΠ²Π°Π»ΡŒΠ½ΠΈΡ… систСм Ρ‚Π° ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ Ρ„Ρ–Π·ΠΈΡ‡Π½ΠΎ Ρ€Π΅Π°Π»Ρ–Π·ΠΎΠ²Π°Π½ΠΈΠΌ Π·Π° допомогою Π΄ΡƒΠΆΠ΅ ΠΌΠ°Π»Π΅Π½ΡŒΠΊΠΈΡ… об’єктів, Ρ‚Π°ΠΊΠΈΡ…, як Π½Π°ΠΏΡ€ΠΈΠΊΠ»Π°Π΄ ΠΌΠ°ΠΊΡ€ΠΎΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΠΈ. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ рассматриваСтся ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΊΠΎΠΎΠΏΠ΅Ρ€ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π°Π³Π΅Π½Ρ‚ΠΎΠ² Π² ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠ°Π³Π΅Π½Ρ‚Π½ΠΎΠΉ срСдС. ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅Ρ‚ΡΡ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ Π½Π° основС ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² обучСния с ΠΏΠΎΠ΄ΠΊΡ€Π΅ΠΏΠ»Π΅Π½ΠΈΠ΅ΠΌ с использованиСм Ρ€Π΅ΠΊΡƒΡ€Ρ€Π΅Π½Ρ‚Π½Ρ‹Ρ… Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй. Главная идСя Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° – использованиС Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π½Π΅ΠΉΡ€ΠΎΠ½Π½ΠΎΠΉ сСти, которая выполняСт ΠΎΠ±ΠΌΠ΅Π½ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠ΅ΠΉ ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠΌΠΈ состояниями Π΄Π²ΡƒΡ… Π°Π³Π΅Π½Ρ‚ΠΎΠ² Π²ΠΎ врСмя ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ†ΠΈΠΈ. ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΡ‹ΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ основан Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° A3C, Ρ€Π΅ΠΊΡƒΡ€Ρ€Π΅Π½Ρ‚Π½ΠΎΠΉ Π½Π΅ΠΉΡ€ΠΎΠ½Π½ΠΎΠΉ сСти Long Short-Term Memory (LSTM) для управлСния Π°Π³Π΅Π½Ρ‚ΠΎΠΌ ΠΈ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ€Π΅ΠΊΡƒΡ€Ρ€Π΅Π½Ρ‚Π½ΠΎΠΉ сСти (сСти ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ†ΠΈΠΈ). ИсслСдовано Π΄Π²Π° Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π° построСния Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Ρ‹ Π½Π΅ΠΉΡ€ΠΎΠ½Π½ΠΎΠΉ сСти. ΠŸΠ΅Ρ€Π²Π°Ρ вСрсия сначала ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΎΠ²Ρ‹Π²Π°Π΅Ρ‚ взаимодСйствиС Π°Π³Π΅Π½Ρ‚ΠΎΠ², Π° Π·Π°Ρ‚Π΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Π² качСствС Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΎ срСдС. Вторая вСрсия сначала Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅Ρ‚ Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ срСдС, Π° ΠΏΠΎΡ‚ΠΎΠΌ ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΡ†ΠΈΡ€ΡƒΠ΅Ρ‚, обмСниваясь высокоуровнСвой ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠ΅ΠΉ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ ΠΎΡ†Π΅Π½ΠΊΠ° ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ модСльной Π·Π°Π΄Π°Ρ‡ΠΈ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ экспСримСнта ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ ΡƒΠ»ΡƒΡ‡ΡˆΠ°Π΅Ρ‚ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΊΠΎΠΎΠΏΠ΅Ρ€ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π°Π³Π΅Π½Ρ‚ΠΎΠ². ΠŸΡ€Π΅ΠΈΠΌΡƒΡ‰Π΅ΡΡ‚Π²ΠΎΠΌ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° ΠΌΠΎΠΆΠ½ΠΎ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ ΠΎΠ½ Π½Π΅ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ наличия слоТных ΠΈ структурированных Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… систСм ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ физичСски Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΎΡ‡Π΅Π½ΡŒ ΠΌΠ°Π»Π΅Π½ΡŒΠΊΠΈΡ… ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ², Ρ‚Π°ΠΊΠΈΡ…, ΠΊΠ°ΠΊ Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ΠΌΠ°ΠΊΡ€ΠΎΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹

    Initial-state dependence of coupled electronic and nuclear fluxes in molecules

    Get PDF
    We demonstrate that coupled electronic and nuclear fluxes in molecules can strongly depend on the initial state preparation. Starting the dynamics of an aligned D2 + molecule at two different initial conditions, the inner and the outer turning points, we observe qualitatively different oscillation patterns of the nuclear fluxes developing after 30 fs. This corresponds to different orders of magnitude bridged by the time evolution of the nuclear dispersion. Moreover, there are attosecond time intervals within which the electronic fluxes do not adapt to the nuclei motion depending on the initial state. These results are inferred from two different approaches for the numerical flux simulation, which are both in good agreement

    ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ авторства Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ студСнчСского ΠΏΠ»Π°Π³ΠΈΠ°Ρ‚Π°

    Get PDF
    In the modern educational context the problem of plagiarism is urgent and requires the development of effective methods of detection and prevention of this phenomenon. The application of authorship identification methods in the field of student plagiarism detection is considered. Different check, detect and analyze plagiarism approaches in various works are investigated. Both classical methods, which include text comparison and similarity search, and modern methods based on machine learning algorithms, as well as their combination and potential modifications, are considered. The advantages and limitations of each method are also discussed, and recommendations are given for choosing one or another approach according to the specific requirements of the research.Special attention is paid to such modern methods as metadata analysis and the application of neural networks. Stylistic analysis reveals authorial peculiarities such as word choice, preferred wording, and even punctuation. Lexical and syntactic models are used to identify repetitive phrases and structures that may indicate plagiarism. Statistical methods can identify anomalies in the use of words and phrases, and machine learning can create models to calculate the probability of plagiarism based on large amounts of data.Ultimately, an comparison of authorship identification techniques in the field of student plagiarism detection is provided, which aims to provide valuable information about different approaches and their applicability, and to help researchers and educators develop effective strategies for detecting and preventing plagiarism in educational environments.Π’ соврСмСнном ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΌ контСкстС ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° ΠΏΠ»Π°Π³ΠΈΠ°Ρ‚Π° являСтся Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΈ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ эффСктивных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² обнаруТСния ΠΈ прСдотвращСния Π΄Π°Π½Π½ΠΎΠ³ΠΎ явлСния. РассмотрСно ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ авторства Π² области обнаруТСния студСнчСского ΠΏΠ»Π°Π³ΠΈΠ°Ρ‚Π°. Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ‹ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ для ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠΈ, обнаруТСния ΠΈ Π°Π½Π°Π»ΠΈΠ·Π° ΠΏΠ»Π°Π³ΠΈΠ°Ρ‚Π° Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ€Π°Π±ΠΎΡ‚Π°Ρ…. РассмотрСны ΠΊΠ°ΠΊ классичСскиС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹, Π² числС ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… сравнСниС тСкстов ΠΈ поиск сходства, Ρ‚Π°ΠΊ ΠΈ соврСмСнныС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹, основанныС Π½Π° Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ°Ρ… машинного обучСния, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΡ… ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ. Π’Π°ΠΊΠΆΠ΅ обсуТдСны прСимущСства ΠΈ ограничСния ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΈ Π΄Π°Π½Ρ‹ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†ΠΈΠΈ ΠΏΠΎ Π²Ρ‹Π±ΠΎΡ€Ρƒ Ρ‚ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ ΠΈΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° Π² соотвСтствии с ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹ΠΌΠΈ трСбованиями исслСдования. ОсобоС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡƒΠ΄Π΅Π»Π΅Π½ΠΎ Ρ‚Π°ΠΊΠΈΠΌ соврСмСнным ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌ, ΠΊΠ°ΠΊ Π°Π½Π°Π»ΠΈΠ· ΠΌΠ΅Ρ‚Π°Π΄Π°Π½Π½Ρ‹Ρ… ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй. БтилистичСский Π°Π½Π°Π»ΠΈΠ· позволяСт Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ авторскиС особСнности, Ρ‚Π°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ Π²Ρ‹Π±ΠΎΡ€ слов, ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡Ρ‚ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΊΠΈ ΠΈ Π΄Π°ΠΆΠ΅ пунктуация. ЛСксичСскиС ΠΈ синтаксичСскиС ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ для выявлСния ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΡŽΡ‰ΠΈΡ…ΡΡ Ρ„Ρ€Π°Π· ΠΈ структур, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Ρ‚ΡŒ Π½Π° ΠΏΠ»Π°Π³ΠΈΠ°Ρ‚. БтатистичСскиС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΈ Π² ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±Π»Π΅Π½ΠΈΠΈ слов ΠΈ Ρ„Ρ€Π°Π·, Π° машинноС ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅ – ΡΠΎΠ·Π΄Π°Ρ‚ΡŒ ΠΌΠΎΠ΄Π΅Π»ΠΈ,Β ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠ΅ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ ΠΏΠ»Π°Π³ΠΈΠ°Ρ‚Π° Π½Π° основС большого количСства Π΄Π°Π½Π½Ρ‹Ρ….Π’ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΌ ΠΈΡ‚ΠΎΠ³Π΅ прСдоставлСно сравнСниС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ авторства Π² области опрСдСлСния студСнчСского ΠΏΠ»Π°Π³ΠΈΠ°Ρ‚Π°, Ρ‡Ρ‚ΠΎ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ†Π΅Π»ΡŒΡŽ Π΄Π°Ρ‚ΡŒ Ρ†Π΅Π½Π½ΡƒΡŽ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ ΠΎ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π°Ρ… ΠΈ ΠΈΡ… примСнимости, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ‚ исслСдоватСлям ΠΈ прСподаватСлям Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ эффСктивныС стратСгии выявлСния ΠΈ прСдотвращСния ΠΏΠ»Π°Π³ΠΈΠ°Ρ‚Π° Π² ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ срСдС

    THE USE OF NEW REAGENT KITS FOR DETECTION AND DESCRIPTION OF ADDITIONAL ALLELES

    Get PDF
    During the screening typing of recruited volunteers with Volga Federal District for unrelated hematopoietic stem cell registry on the loci (HLA)-A, B, DRB1, DRB345 in sample No 1758 identified a new allele at locus A. The use of basic kit AlleleSEQR HLA-A Sequencing in combination with HARP – A2F98A allowed to determine the genotype of this sample – А*30:01:01, a new allele А*25, Π’*13, 44, DRB1*03, 09, DRB3*02, DRB4*01

    Construction of the Initial Part of a Ion Linear Accelerator from Similar Short Cavities

    Full text link
    The construction of the initial part of a normally conducting linac for hydrogen ion beams with a pulsed current of ~20 mA up to an energy of ~70 MeV is considered. The RFQ at a frequency of ~160 MHz accelerates ions to an energy of ~4 MeV. Further acceleration is carried out at a doubled frequency by short, up to 5Ξ²Ξ»5\beta\lambda, cavities, operating in the TM010 mode, with drift tubes. Focusing is carried out by doublets of quadrupole lenses placed between the cavities. The structure of the accelerating-focusing channel, with given beam parameters, with reserves provides both the conditions for stable longitudinal and transverse motion of particles, and reliable technical implementation. The main results of the simulations of particle dynamics and the main parameters of the elements of the channel are presented. The possibility of constructing an linac with a higher output energy is analyzed.Comment: in Russian languag

    Immunogenetic characteristics of unrelated hematopoietic stem cell donors recruited in the Sverdlovsk, Saratov, Yaroslavl and Vladimir regions

    Get PDF
    Aim of the study was to investigate the distribution features of HLA alleles and multilocus haplotypes in potential donors of hematopoietic stem cells recruting in the Sverdlovsk, Saratov, Yaroslavl and Vladimir regions. Material and methods. Sequence Based Typing technology was used to identify human leukocyte antigen (HLA)-A, -B, -C, -DRB1 alleles from 2683 Russian unrelated bone marrow volunteers living in the Sverdlovsk (n = 1018), Saratov (n = 825), Yaroslavl (n = 604) and Vladimir (n = 236) regions. HLA allele and haplotype frequencies were estimated via maximum-likelihood analysis from genotypic data through an expectation-maximization (EM) algorithm for unknown gametic phase. Results and discussion. In all studied populations, 16 HLA-A, 13 HLA-C, 13 HLA-DRB1 alleles were selected. In the locus HLA-B, 28 alleles were detected in the populations of the Sverdlovsk and Yaroslavl regions, 27alleles – in the Saratov region, 25 alleles – in the Vladimir. Seventeen alleles, HLA-A*02, HLA-A*03, HLA-A*01, HLA-A*24, HLA-B*07, HLA-B*35, HLA-Π‘*07, HLA-Π‘*06, HLA-Π‘*04, HLA-Π‘*03, HLA-Π‘*12, HLA-DRB1*15, HLA-DRB1*07, HLA-DRB1*01, HLA-DRB1*13, HLA-DRB1*04, HLA-DRB1*11 exhibit frequencies over 10 %. The highest frequency extended haplotype in the all studied populations HLA-A*01-B*08-C*07-DRB1*03, was observed frequencies of 4,4 % – in the Sverdlovsk region, 3,2 % – in the Saratov region, 4,9 % – in the Yaroslavl region and 4,2 % – in the Vladimir region. Routine HLA typing allowed us to define four new HLA alleles in the populations of the Sverdlovsk and Saratov region

    Reconstruction of recombination sites in genomic structures of the strains of genotype 6 of hepatitis C virus

    Get PDF
    The encoded portion of the complete genomes of 46 strains of the genotype 6 of hepatitis C virus through bioinformatics RDP programs complex group of 6 recombinants strains was identified, in which 7 recombination sites were fixed. Strains correspond to the three-recombinant HCV subtypes: 6a, 6b and 61. For each of the identified recombinant we defined parent strains from which they can be obtained. Three recombinants were obtained from parent strains of the same subtype (homologous inside subgenotypic recombination). For the remaining three recombinants parent strains were members of three different subtypes (between subgenotypic recombination).In one strain we identified a unique recombination site in a highly conservative NS3 gene. Most of the recombination sites occurred in the region of the structural genes C, E1 and E2, and in the area of non-structural genes NS5a and NS5b.In the recombinant strain DQ480518-6a two recombination site were identified. One site is located in the structural and nonstructural genes (E2 + NS1 + NS2), and a second one in non-structural region. Dimensions of recombination sites can vary from 86 to 1072 nucleotide bases. The study identified "hot spots" of recombination in the strains of genotype 6 of hepatitis C virus. The recombinants were found in the population of the three countries: the United States (from the serum of an immigrant), Hong Kong and China

    Bioinformational analysis of Yersinia pseudotuberculosis IP32953 CRISPR/cas system

    Get PDF
    The results of this study include Yersinia pseudotuberculosis CRISPR/Cas system structure analysis. CRISPR/Cas system is a specific adaptive protection against heterogeneous genetic elements. The object of research was the complete genome of Y. pseudotuberculosis IP32953 (NC_006155). CRISPR/Cas system screening was performed by program modelling methods MacSyFinder ver. 1.0.2. CRISPR loci screening and analyzing were carried out by program package: CRISPR Recognition tool (CRT), CR1SP1: a CRISPR Interactive database, CRISPRFinder, and PilerCR. Spacer sequences were used in order to find protospacers in ACLAME, GenBank-Phage and RefSeq-Plasmid databases by BLASTn search algorithm. Protospacer sequences could be found in genomes of phages, plasmids and bacteria. In last case complete genomes of bacteria were analyzed by online-tool PHAST: PHAge Search Tool. Y. pseudotuberculosis IP329353 has CRISPR/Cas system that consists of one sequence of cas-genes and three loci. These loci are far away from each other. Locus YP1 is situated in close proximity to cas-genes. Protospacers were found in genomes of Y. pseudotuberculosis PB1/+, Y. intermedia Y228, Y. similis str. 228, Salmonella phage, Enterobacteria phage, Y. pseudotuberculosis 1P32953 plasmid pYV and plasmid of Y. pseudotuberculosis 1P31758. Thus, the combination of four program methods allows finding CRISPR/Cas system more precisely. Spacer sequences could be used for protospacer screening

    APPLICATION OF MATHEMATICAL METHOD PREDICTIONS FOR IDENTIFICATION OF PATTERNS RELATIONS MUTATIONS IN PROTEINS ENCEPHALITIS VIRUS AND A MANIFESTATION OF ITS PHENOTYPIC TRAITS

    Get PDF
    We studied the natural connections between the amino acid sequences of proteins C, prM, E and NS1 virus strains of tick-borne encephalitis (TBE) and their three phenotypic traits -neuroinvasiveness, thermal stability and thermoresistance. Coupling strength is assessed using measures of competitive sequence similarity of each strain with reference strains. For such purposes subsets of strain sections are chosen amino acid composition specifics of which can predict the value of a phenotypic trait of interest. The possibility to predict missing elements in data both in amino acid composition, and in target properties is demonstrated. The relationships between pairs of phenotypic traits of strains were evaluated

    Dynamic magnetic response of a ferrofluid in a static uniform magnetic field

    Get PDF
    A theory for the frequency-dependent magnetic susceptibility of a ferrofluid in a static uniform magnetic field is developed, including the dipolar interactions between the constituent particles. Interactions are included within the framework of modified mean-field theory. Predictions are given for the linear responses of the magnetization to a probing ac field both parallel and perpendicular to the static field and are tested against results from Brownian dynamics simulations. The effects of the particle concentration and dipolar coupling constant on the field-dependent static susceptibilities and the frequency dispersions are shown to be substantial, which justifies taking proper account of the interactions between particles. The theory is reliable provided that the volume concentration and dipolar coupling constant are not too large and within the range of values for real ferrofluids. Β© 2018 American Physical Society
    • …
    corecore