AGENT COMMUNICATION METHOD IN COOPERATIVE
ENVIRONMENT BASED ON THE ARTIFICIAL NEURAL NETWORKS

Yaroslav Protsenko, Anton Paramonov

The problem of communication between cooperating agents in multiagent environments is
considered in this paper. An algorithm is proposed that is based in reinforcement learning and
recurrent neural networks. Main idea behind the algorithm is to use an additional recurrent network
that translates information from internal state of one agent to internal state of another agent.
Experimental evaluation is performed on model environment. Experimental results have shown that
proposed method is potentially useful but requires additional investigation.

B pobomi posensoacmucsi npobiema KOMyHiKayii KOONEpyrouux azeHmis y Mylbmua2esmHux
cepedoguuax. 3anponoHOBAHO ANCOPUMM HA OCHOBI NiOX00i8 HAGUAHHS 3 NIOKPINIEHHAM 3
BUKOPUCMAHHAM PEKYPEHMHUX HeUpOHHUX mepedic. 1 0106na ides aneopummy — ye 8UKOPUCTAHHS
000amK080i peKypeHMHOI Mepexci, KA BUKOHYE 0OMIH THGHOpMAYIeEto MIdC BHYMPIUWHIMU CIMAHAMU
080X azenmis nio uac komyHikayii. Oopanuii nioxio 3acHoganutl Ha sacmocyeanti anrcopummy A3C,
pexypenmuoi Hetipounoi mepedici Long Short-Term Memory (LSTM) ons kepysanus acenmom ma
000amko060i pekypenmnoi mepedxci (mepednci komynixayii). Jocnioxcerno 06a sapianma apximexmypu
HeUpPOHHOI MepediCi.

3a nepwioro eepciclo azeHmu CHOYAMK)Y «CHIAKVIOMbCA», A NOMIM BUKOPUCHOBYEMbC
pe3yremam y AKocmi 000amKo8ux 0aHux npo cepeoosuwe. /[pyea eepcis cnoyamky aHanizye 0awi
npo cepedosuiye, a NOMIM peanizye «CRIIKYBAHHS» A2eHMI8, OOMIHIOIOHYUCL BUCOKOPIBHEBOHO
iHpopmayicro. Ilposedeno excnepumeHmManbHy OYIHKY 3aNPONOHOBAHO20 ANICOPUMMY HA NPUKAAO]
MoOenbHOI 3a0ayi. Pe3ynomamu excnepumenmy 0oeenu, wo 3anponoHO8aHUll nioxXio NOKpauye
ehexmusnicmv Koonepytouux acenmis. llepesacoro ancopummy € me, wjo 8iH He NOMpeOYe HAABHOCI
CKAAOHUX MA CMPYKMYPOBAHUX 0OUUCTIOBATLHUX CUCEM Ma Modice Oymu (Pi3uyHo peanizoeaHum 3a
00NOMO2010 OYyHCce MATIeHbKUX 00 €KMIB, MaKux, ik HaNPUKIa0 MaKkpoMOaeKyIu.

B pabome paccmampusaemcs npodiemMa KOMMYHUKAYUU KOONEPUPYIOWUX A2eHMO8 8
Mynemuazenmuolt cpeoe. llpednacaemces aneopumm Ha 0CHO8e NOOX0008 00YUeHUs: C NOOKPeNnieHUeM
C UCNOTIL308AHUEM PEKYPPEHMHBIX HelUpPOHHbIX cemell. 1 1asnas udes areopumma — UCHOIb308AHUE
OONOJIHUMENbHOU HEUPOHHOU Ccemu, KOMOopas 6blNOaHsem O0OMeH uH@opmayuei menHcoy
BHYMPEHHUMU COCMOAHUAMU O08YX A2EHMO8 80 6peMs KommyHuxayuu. Ilpednazaemwvii nooxoo
ocHosan Ha npumeHenuu aneopumma A3C, pexyppenmuou Hetipounou cemu Long Short-Term
Memory (LSTM) oOns ynpasenenusi azenmom u OONOIHUMENbHOU peKyppeHmHou cemu (cemu
KoMMmyHuKayuu). Mcciedosano 06a sapuanma nocmpoeHus apXumexkmypol HeUpOHHOU Cemu.

Ilepsas sepcus cHauania opeanu308vi8aem 63auMoOelcmsue a2eHmos, a 3amem UCNONb3Yem
pesyivmam 8 Kauecmee OONOJTHUMENbHbIX OAHHbIX O cpede. Bmopas eepcus chauana ananusupyem
OaHuble O cpede, a NOMOM KOMMYHUYUpPYem, OOMEHUBAACL BbICOKOYPOBHEBOU UHGopMayuel.
IIposedena sKcnepumeHmManvbHas OYeHKa NpPeodNiONHCEHHO20 aN20pumma Ha npumepe MoOenbHOl
3a0auu. Pe3ynbmamoi 3Kcnepumenma nOKA3anu, 4mo NpPeoNONCEeHHbI alcopumm Yiyuuiaem
apexmusnocme Koonepupyrowux azeHmos. Ilpeumyuecmeom aneopumma MOMICHO CHUMaAms mo,
4mo oH He mpedyem HANUYUS CLONCHBIX U CIPYKIMYPUPOBAHHBIX 8bIUUCTUMENLHBIX CUCTNEM U MOXCEM
Obimb uzuyecKu peanuz08aH ¢ NOMOWbIO O4YeHb MANEeHbKUX 0DBeKMos8, MAaKux, KaK Hanpumep
MAKPOMOJIEKYJIb.

This paper deals with the problem of communication between cooperating agents in multi-agent
environments with distributed decision making. In the last few years, the methods of creating
intelligent agents that combine reinforcement learning and gradient methods have been significantly
developed [1, 2], which have been successfully applied to fairly complex environments [3, 4]. A
common feature of these achievements is that they use a centralized decision-making system that
directly controls agents. However, there are a wide range of applications where centralized
management is impractical or technically impossible. Such areas as traffic coordination,
communications, trade, defense. Existing solutions to these problems now use explicitly programmed
interaction protocols, sometimes in combination with some machine learning methods, to make
decisions according to these protocols. This paper explores an alternative approach to building agent
cooperation — the search for an effective agent communication protocol and efficient information
encoding through reinforcement learning.

The proposed approach is based on the application of the Asynchronous Advantage Actor-Critic
(A3C) algorithm [2], the Long Short-Term Memory (LSTM) recurrent neural network [5] for agent
management (hereinafter referred to as main recurrent unit) and the additional recurrent network -
the communication network. The communication network is also a separate LSTM unit. Each agent
in the system observes a limited area of the environment. It has its own "copy of the network™ and
the internal state of the network. Information is exchanged when agents are in direct contact with the
environment. In this case, the communication network updates the internal state of the agent, using
the internal state of another agent, and vice versa. This network can be seen as a "language" that
agents create during training. The scheme of agent interaction is shown in Figure 1.

The procedure of the agent's functioning is as follows: 1) reading directly observed information
about the environment; 2) and 3) a communication network is activated for each agent (zero or more),
which is also a recurrent network that reads the agent's state and processes the other agent's state as
an input signal; 4) one iteration of the algorithm of the main recurrent block; 5) performing the action
that was calculated by the interaction network in step 4. In this algorithm, agents in the field of view
of each other, first exchange information, and then carry out the action in the environment.

The paper investigates the effectiveness of the implementation of two possible versions of this
algorithm. The first version uses a communication network to update the internal state of the main
LSTM unit during contact with other agents. Then the interaction between the agent and the
environment is performed. The data flow diagram of the first version execution data is shown in
Figure 2. The represented agents 1..N represent that they are in direct contact with the current agent
attime T (ie, they are "visible" in the environment). The second version first reads information from
the environment and then "communicates” with other agents. The results of communication with other
agents are stored in a separate element of internal memory.

The agent controller is a recurrent network because it needs to store information between time
cycles. Because of a variable number of interactions with other agents during one clock cycle of the
controller, it is advisable to implement the communication network as a recurrent network. So the
agent controller is a nested recurrent network.

The communication network at each agent interaction iteration complements the information
stored in the LSTM state vector. The updated state vector is fed to the main recurrent block, which
calculates the high-level feature vector at each time cycle. The output layer of the network is the
perceptron, which receives the feature vector and generates the action logits vector (in the case of a
discrete set of possible actions).

In the second version of the algorithm, the role of the main recurrent unit is reduced to analyzing
the environment and providing high-level information about it. Accordingly, high-level analysis is
now performed by the communication network. The communication network has its own state, which
we call signal. During communication, two agents exchange signals and process them with their

communication networks. A common feature of both implementations is that the agent is still a nested
recurrent network. The potential advantage of such an organization is that there is no need to store
information about the environment (low-level) and other agents (high-level) in one storage vector.
Figure 3 shows a data flow diagram according to an alternative version of the algorithm.

1) - 1)
// .
//z
/// \'-._
F'S &
Interaction Interaction
network network
Iy Iy
4) 4)
¥ ¥
State of Agent 1 2) State of Agent 2
' 3) | ' | : 3)
v . *"’ "1* v .
Communication network ke’ *1 Communication network

Figure 1. Diagram of interaction of agents based on recurrent neural networks.

Visible Visible) P
agent 1 agent M @L

State of State of
visible visible Observation Action
agent 1 agent N
v v v
Enriched" Main LST\:EC?S: put
Communication Communication| LSTM-state
—» — » u *
network network recur:fte t Parcaptron

A

Agent's LSTM-state

Agent's LSTM-state
at time T-1

attime T

Y

Figure 2. Data flow diagram of the first version of the algorithm.

To train the agent the A3C [2] algorithm is used with one modification. In the original version
of the algorithm, the policy loss is defined as:

L

= —log(m(s)) - A(s) — B - H(m) 1)
where 7 is the probability of the agent performing the action in state s, A(s) is the estimated value of
the advantage in state s, H(w) is the policy entropy, and £ is a constant parameter.

Instead of the logarithm of the probabilistic distribution of actions, it is proposed to use a cross-

entropy analogue as follows:

L=(1-0) log(1—m(s)) —o-log(n(s))) - A(s) — - H(m))

where o is the binary value (equal to 1 for the action actually performed and 0 for all other actions),
and the gradient is calculated for all actions.

It is found that the proposed form of functionality helps to keep the values of the policy logos
close to each other. That is, it does not allow the agent to fall into such a state when he always
chooses the same action.

Visible Visible
agent 1 agent ™

Signal of Signal of
visible visible
agent 1 agent M
) ¥ ¥)
Agent's signal Agent's signal
attime T-1 Communication Communication at time T‘
—_— | —» — 2
network netwark J'
4 A Perceptran
LSTM autput
vector
Agent's LSTM ¥ Action Agent's
== Observation LSTMstate at time
state at time T-1 : |
e Main Lrjenc_turre"ut < Environment T >

Figure 3. Data flow diagram according to the second version of the algorithm.

An experiment was performed for which we used a maze environment: a 5x5 cell field; there
may be a wall between the cells that restricts movement and visibility. One of the cells is the "exit",
in the other three cells are agents. Agents observe the horizontal and vertical distance to the nearest
walls, the number of left and right corners in each of the four directions, and the direction and distance
to the exit cell, if any. However, agents do not know their own coordinates. The agent's task is to
explore the maze and find the exit cell. The interaction with the environment ends when the agent is
in the exit cell. Guaranteed that there are paths between any two cells of the maze.

The purpose of the experiment is to determine whether an agent team with a communications
network will completely leave the maze faster than a team without communication. Four agent
versions are compared:

1. Agent without communication and without the ability to see other agents

2. Agent without communication, but able to "see™ other agents - if other agents are visible,
agents receive direction and distance from each other as part of sensory data

3. An agent capable of seeing other agents and with a communication network of version 1.

4. An agent capable of seeing other agents and with a communication network of version 2.

The agent team is considered to have successfully completed the maze when all agents reach
the exit cells of the maze. Agents must minimize the number of moves that agents make before the
team exits the maze.

Using a reinforcement learning algorithm involves a reward function that agents will strive to
maximize. It has been experimentally determined that the reward function must have “gradient” in
some sense - that is, the reward should be given not only when the agent reaches the goal, but also
when the agent is acting in the right direction. However, the reward function can be very simple: it is
enough to point out actions that were in the “right direction” and which were in the wrong direction.
The gradient descent algorithm was chosen according to the recommendations of the authors of the
A3C algorithm [2]. The learning rate and others parameters were chosen experimentally.

Instead of running a large number of concurrent simulations and synchronization after each
episode, only two concurrent worker threads are used and synchronized once in a few episodes. This
solution is because of the use of the OpenMP platform [6] with Intel Xeon processors - two simulation
threads run much faster than many threads, and periodic synchronization simulates the large number
of threads. Another optimization of the experiment is the formation of a team with one agent during
the training of "blind" agents, who can neither see the other nor communicate.

After 30,000 training episodes, training is stopped and performance of teams of three agents in
all four configurations is tested. After that, another 20,000 training episodes were performed for each
model and tested again. The test results represent the number of runs in each of the simulations. That
is, four sets of results were generated for agents after 30,000 training episodes, and four more after
50,000 episodes (see Figure 4).

The agent performance statistics are summarized in Table 1. The table provides information on
how many episodes of all 10,000 simulations were successful for the agent team (ie, all agents left
the maze). The best result for each of the statistics are in the table.

During the training, the statistics of the effectiveness of agents were recorded over time. Figure
5 shows a graph of the average number of moves per training episode in different iterations of training.
The average number is given for clarity, since the number of moves has a large variance.

0.18 018
- Agents with no - Agents with no
016 interaction 016 interaction
Agents able I Agents able
0.14 - to see each other 0.14 to see each other
— Agents with I — Agents with
0.12 A II communication v. 1 012 A J communication v. 1
= Agents with = I I Agents with
2 0.10 | 1 B ommunication v. 2 2 0,10 L W communication v. 2
: 11 : 1!
3
o 0.08 = 0.08 H
: IR : il
ool I]
Ii iIII I N IIIIi I i
oop | HMMHAANY 002 | L.
0.00 Jmmnulhlmu#@w 0.00 I lmll
0 10 20 30 40 50 B0 70 80 90 100 0 10 20 30 40 50 60 JF0 80 90 100
Time to leave for team of three agents Time to leave for team of three agents
(a) (6)

Figure 4. Distribution of time to leave the maze for teams of agents of different architecture: (a)
after 30 thousand training episodes; (b) after 50 thousand training episodes.

The graph shows that the blind agent (without communication and without the visibility of other
agents) is performing better than others. However, it should be noted that the probability of the initial
location of one agent near the exit in a random maze is much higher than the probability of the location
of all three agents near the exit. Therefore, the agent of the simplest architecture was considered only
to compare the work of the team against one.

The agent training history (see Figure 5) shows that initialization of the agent’s network with
version 2 communication was unsuccessful. And at the stage of 30 thousand iterations of training the
effect of a bad start has not yet been smoothed out. However, at 50,000 iterations, version 2 began to
show a trend toward better results. Also, the statistics show that the ability to see other agents is a
very strong heuristic when looking for a way out.

This experiment shows that the proposed algorithm (namely version 2) is capable of increasing
the efficiency of the team of agents but needs further research to improve it. This algorithm can be
used to find and explore optimal strategies in environments with further formalization and
implementation in the form of an explicitly programmed algorithm. The advantage of the algorithm
is that it does not require sophisticated and structured computing systems, and can potentially be
implemented with very small objects, such as macromolecules.

Statistics of maze passing by teams of agents with different control network
configurations in two stages of training.

Percentage of Average Most I quartile of | Median of 11 quartile
. .) frequent . . .
Configuration successful time to time to time to time to of time to
passages, % leave leave leave leave
leave
After 30,000 training episodes
Without
seeing others
and 29.20 2491 11 13 20 32
communicatio
n
Able to see 72.84 24.67 13 14 21 31
others
Communicati
on of version 75.61 23.34 13 12 19 29
1
Communicati
on of version 74.49 26.10 16 14 22 34
2
After 50,000 training episodes
Without
seeing others
and 56.76 26.62 11 12 21 35
communicatio
n
Able to see 87.08)30 15 13 20 29
others
Communicati
on of version 87.21 23.64 10 12 20 30
1
Communicati
on of version 88.85 22.19 12 13 19 29
2

37.5 1
- Agents with no interaction

Agents able to see each other
= Agents with communication v. 1
- Agents with communication v. 2

35.0 1

32.5 1

30.0 4

27.5 1

25.0 1

Average time to leave for team
(for one agent in case of agent with no interaction)

22.5 1

%

20.0 1

T T T T T
0 10000 20000 30000 40000 S0000
Training episodes

Figure 5. Movable average of the number of moves of agents at different training stages.

REFERENCES

1. Playing Atari with Deep Reinforcement Learning [online] / [V. Mnih, K. Kavukcuoglu,, D.
Silver Ta in.]. — 2013. — Available at: https://arxiv.org/abs/1312.5602.

2. Asynchronous Methods for Deep Reinforcement Learning [online] / Volodymyr Mnih, Adria
Puigdoménech Badia, Mehdi Mirza Ta in.]. — 2016. — Available at: https://arxiv.org/abs/1602.01783.

3. OpenAl Five [online] — Available at: https://openai.com/five/.

4. AlphaStar: Mastering the Real-Time Strategy Game StarCraft 11 [online]. — 2019. — Available
at: https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii.

5. Sepp Hochreiter. Long Short-Term Memory [online] / Sepp Hochreiter, Jurgen Schmidhuber.
—1997. — Available at: http://www.bioinf.jku.at/publications/older/2604.pdf.

6. OpenMP [online] — Available at: https://www.openmp.org/

