11 research outputs found

    Antivirulent Properties of Underexplored Cinnamomum tamala Essential Oil and Its Synergistic Effects with DNase against Pseudomonas aeruginosa Biofilms – An In Vitro Study

    No full text
    Pseudomonas aeruginosa is a nosocomial pathogen colonizing patients with chronic infectious diseases and has gained resistance to all the known broad spectrum antibiotics available today. The present study showcases the antibiofilm potential of an essential oil (EO) from an underexplored Cinnamomum species namely, C. tamala, against P. aeruginosa biofilms. Furthermore, the synergistic effects of the EO along with a commercially available DNase (DNaseI) and a DNase (MBD) isolated from a marine bacterium were explored for its antibiofilm activity. The results showed that the synergized action has maximum efficacy in inhibiting young and preformed biofilms. The synergized effect of EO and DNaseI showed 70% inhibition against matured biofilms of P. aeruginosa. The EO from C. tamala also showed quorum sensing inhibitory potential as it could inhibit the swarming motility behavior of P. aeruginosa. The synergistic action of EO and DNases offers a novel alternate therapeutic strategy for combating P. aeruginosa biofilm associated infections

    Bacterial consortium of millepora dichotoma exhibiting unusual multifocal lesion event in the Gulf of Eilat, Red Sea

    No full text
    Colonies of the hydrocoral Millepora dichotoma along the Gulf of Eilat are exhibiting unusual tissue lesions in the form of white spots. The emergence and rapid establishment of these multifocal tissue lesions was the first of its kind reported in this region. A characterization of this morphological anomaly revealed bleached tissues with a significant presence of bacteria in the tissue lesion area. To ascertain possible differences in microbial biota between the lesion area and non-affected tissues, we characterized the bacterial diversity in the two areas of these hydrocorals. Both culture-independent (molecular) and culture-dependent assays showed a shift in bacterial community structure between the healthy and affected tissues. Several 16S rRNA gene sequences retrieved from the affected tissues matched sequences of bacterial clones belonging to Alphaproteobacteria and Bacteroidetes members previously associated with various diseases in scleractinian corals
    corecore