14 research outputs found

    Extraordinary strain hardening from dislocation loops in defect-free Al nanocubes

    Full text link
    The interaction of crystalline defects leads to strain hardening in bulk metals. Metals with high stacking fault energy (SFE), such as aluminum, tend to have low strain hardening rates due to an inability to form stacking faults and deformation twins. Here, we use in situ SEM mechanical compressions to find that colloidally synthesized defect-free 114 nm Al nanocubes combine a high linear strain hardening rate of 4.1 GPa with a high strength of 1.1 GPa. These nanocubes have a 3 nm self-passivating oxide layer that has a large influence on mechanical behavior and the accumulation of dislocation structures. Post-compression TEM imaging reveals stable prismatic dislocation loops and the absence of stacking faults. MD simulations relate the formation of dislocation loops and strain hardening to the surface oxide. These results indicate that slight modifications to surface and interfacial properties can induce enormous changes to mechanical properties in high SFE metals.Comment: 10 pages, 7 figure

    Stress Induced Structural Transformations in Au Nanocrystals

    Full text link
    Nanocrystals can exist in multiply twinned structures like the icosahedron, or single crystalline structures like the cuboctahedron or Wulff-polyhedron. Structural transformation between these polymorphic structures can proceed through diffusion or displacive motion. Experimental studies on nanocrystal structural transformations have focused on high temperature diffusion mediated processes. Thus, there is limited experimental evidence of displacive motion mediated structural transformations. Here, we report the high-pressure structural transformation of 6 nm Au nanocrystals under nonhydrostatic pressure in a diamond anvil cell that is driven by displacive motion. In-situ X-ray diffraction and transmission electron microscopy were used to detect the transformation of multiply twinned nanocrystals into single crystalline nanocrystals. High-pressure single crystalline nanocrystals were recovered after unloading, however, the nanocrystals quickly reverted back to multiply twinned state after redispersion in toluene solvent. The dynamics of recovery was captured using transmission electron microscopy which showed that the recovery was governed by surface recrystallization and rapid twin boundary motion. We show that this transformation is energetically favorable by calculating the pressure-induced change in strain energy. Molecular dynamics simulations showed that defects nucleated from a region of high stress region in the interior of the nanocrystal, which make twin boundaries unstable. Deviatoric stress driven Mackay transformation and dislocation/disclination mediated detwinning are hypothesized as possible mechanisms of high-pressure structural transformation.Comment: 32 pages, 14 figures, and 1 movie (please open pdf with Adobe Acrobat Reader to see the embedded movie

    High pressure induced precipitation in Al7075 alloy

    Full text link
    Precipitate-matrix interactions govern the mechanical behavior of precipitate strengthened Al-based alloys. These alloys find a wide range of applications ranging from aerospace to automobile and naval industries due to their low cost and high strength to weight ratio. Structures made from Al-based alloys undergo complex loading conditions such as high strain rate impact, which involves high pressures. Here we use diamond anvil cells to study the behavior of Al-based Al7075 alloy under quasi-hydrostatic and non-hydrostatic pressure up to ~53 GPa. In situ X-ray diffraction (XRD) and pre- and post-compression transmission electron microscopy (TEM) imaging are used to analyze microstructural changes and estimate high pressure strength. We find a bulk modulus of 75.2 +- 1.9 GPa using quasi-hydrostatic pressure XRD measurements. XRD showed that non-hydrostatic pressure leads to a significant increase in defect density and peak broadening with pressure cycling. XRD mapping under non-hydrostatic pressure revealed that the region with the highest local pressure had the greatest increase in defect nucleation, whereas the region with the largest local pressure gradient underwent texturing and had larger grains. TEM analysis showed that pressure cycling led to the nucleation and growth of many precipitates. The significant increase in defect and precipitate density leads to an increase in strength for Al7075 alloy at high pressures.Comment: 15 pages, 5 figure

    Nucleation of Dislocations in 3.9 nm Nanocrystals at High Pressure

    Full text link
    As circuitry approaches single nanometer length scales, it is important to predict the stability of metals at these scales. The behavior of metals at larger scales can be predicted based on the behavior of dislocations, but it is unclear if dislocations can form and be sustained at single nanometer dimensions. Here, we report the formation of dislocations within individual 3.9 nm Au nanocrystals under nonhydrostatic pressure in a diamond anvil cell. We used a combination of x-ray diffraction, optical absorbance spectroscopy, and molecular dynamics simulation to characterize the defects that are formed, which were found to be surface-nucleated partial dislocations. These results indicate that dislocations are still active at single nanometer length scales and can lead to permanent plasticity.Comment: 33 pages, 12 figure

    Nanoscale Thin Films of Niobium Oxide on Platinum Surfaces: Creating a Platform for Optimizing Material Composition and Electrochemical Stability

    Get PDF
    A nanoscale thin film of niobium oxide on a platinum substrate was evaluated for its influence on the electronic and chemical properties of the underlying platinum towards the oxygen reduction reaction with applications to proton exchange membrane fuel cells. The nanoscale thin film of niobium oxide was deposited using atomic layer deposition onto the platinum substrate. A film of niobium oxide is a chemically stable and electronically insulating material that can be used to prevent corrosion and electrochemical degradation when layers are several nanometers thick. These layers can be insulating if sufficiently thick and may not be sufficient to protect the platinum from corrosion if too thin. An ∼3 nm thin film of niobium oxide was fabricated on the platinum surface to determine its influence on the electronic and chemical properties at the interface of these materials. The atomic layer deposition process enabled a precise control over the material composition, structure, and layer thickness. The niobium oxide film was evaluated using cyclic voltammetry and electrochemical impedance spectroscopy to evaluate whether a balance could be found between the inhibition of platinum degradation and electronic insulation of the platinum for use in proton exchange membrane fuel cells. The 3 nm thin niobium oxide film was found to be sufficiently thin to permit electronic conductivity while reducing the incidence of platinum dissolution

    Stress-Induced Structural Transformations in Au Nanocrystals.

    No full text

    Synthesis of Multifunctional Amorphous Metallic Shell on Crystalline Metallic Nanoparticles

    No full text
    Colloidal nanoparticles can be coated with a conformal shell to form multifunctional nanoparticles. For instance, plasmonic, magnetic, and catalytic properties, chemical stability and biocompatibility can be mixed and matched. Here, a facile synthesis for depositing metal boride amorphous coatings on colloidal metallic nanocrystals is introduced. The synthesis is independent of core size, shape, capping ligand, and composition. Shell thickness can be as thin as 3 nm with no apparent pinholes. High pressure studies show that the coatings are highly resistant to crystallization and are strongly bonded to the crystalline core. By choosing either CoB or NiB for the coating, the composite nanoparticles can be either ferromagnetic or paramagnetic at room temperature, respectively
    corecore