6 research outputs found

    Use of Remote Sensing/Geographical Information Systems (RS/GIS) to Identify the Distributional Limits of Soil-Transmitted Helminths (STHs) and Their Association to Prevalence of Intestinal Infection in School-Age Children in Four Rural Communities in Boaco, Nicaragua

    Get PDF
    STHs can infect all members of a population but school-age children living in poverty are at greater risk. Infection can be controlled with drug treatment, health education and sanitation. Helminth control programs often lack resources and reliable information to identify areas of highest risk to guide interventions and to monitor progress. Objectives: To use RS/GIS to identify the environmental variables that correlate with the ecology of STHs and with the prevalence of STH infections. Methods: Geo-referenced in situ prevalence data will be overlaid over an ecological map derived from the RS environmental data using ESRI s ArcGIS 9.3. Prevalence data and RS environmental data matching at the same geographical location will be analyzed for correlation and those RS environmental variables that better correlate with prevalence data will be included in a multivariate regression model. Temperature, vegetation, and distance to bodies of water will be inferred using data from the Moderate-Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites, and Thematic Mapper (TM) and Enhance Thematic Mapper Plus (ETM+) satellite sensors onboard Landsat 5 and Landsat 7 respectively. Elevation will be estimated with data from The Shuttle Radar Topography Mission (SRTM). Prevalence and intensity of infections will be determined by parasitological survey (Kato Katz) of children enrolled in rural schools in Boaco, Nicaragua, in the communities of El Roblar, Cumaica Norte, Malacatoya 1, and Malacatoya 2). Expected Results: Associations between RS environmental data and prevalence in situ data will be determined and their applications to public health will be discussed. Discussion/Conclusions: The use of RS/GIS data to predict the prevalence of STH infections could be useful for helminth control programs, providing improved geographical guidance of interventions while increasing cost-effectiveness. Learning Objectives: (1) To identify the RS environmental variables that can help predict the prevalence of STH infections. (2) To understand potential applications of RS/GIS to national helminth control programs. (3) To asses the applicability of RS/GIS to control STH infections

    Identifying Geographic Areas at Risk of Soil-transmitted Helminthes Infection Using Remote Sensing and Geographical Information Systems: Boaco, Nicaragua as a Case Study

    Get PDF
    Several types of intestinal nematodes, that can infect humans and specially school-age children living in poverty, develop part of their life cycle in soil. Presence and survival of these parasites in the soil depend on given environmental characteristics like temperature and moisture that can be inferred with remote sensing (RS) technology. Prevalence of diseases caused by these parasitic worms can be controlled and even eradicated with anthelmintic drug treatments and sanitation improvement. Reliable and updated identification of geographic areas at risk is required to implement effective public health programs; to calculate amount of drug required and to distribute funding for sanitation projects. RS technology and geographical information systems (GIS) will be used to analyze for associations between in situ prevalence and remotely sensed data in order to establish RS proxies of environmental parameters that indicate the presence of these parasits. In situ data on helminthisasis will be overlaid over an ecological map derived from RS data using ARC Map 9.3 (ESRI). Temperature, vegetation, and distance to bodies of water will be inferred using data from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Landsat TM and ETM+. Elevation will be estimated with data from The Shuttle Radar Topography Mission (SRTM). Prevalence and intensity of infections are determined by parasitological survey (Kato Katz) of children enrolled in rural schools in Boaco, Nicaragua, in the communities of El Roblar, Cumaica Norte, Malacatoya 1, and Malacatoya 2). This study will demonstrate the importance of an integrated GIS/RS approach to define clusters and areas at risk. Such information will help to the implementation of time and cost efficient control programs and sanitation efforts

    Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide.

    Get PDF
    International audienc

    Human Health Risk Assessment for Aluminium, Aluminium Oxide, and Aluminium Hydroxide

    No full text
    corecore