25 research outputs found

    Stability and flexibility of heterometallic formate perovskites with the dimethylammonium cation: pressure-induced phase transitions

    Get PDF
    We report the high-pressure properties of two heterometallic perovskite-type metal-organic frameworks (MOFs) templated by dimethylammonium (NH2(CH3)2, DMA+) with the general formula [DMA]MI0.5CrIII0.5(HCOO)3, where MI = Na+ (DMANaCr) and K+ (DMAKCr). The high-pressure Raman scattering studies show crystal instabilities in the 4.0-4.4 GPa and 2.0-2.5 GPa ranges for DMANaCr and DMAKCr, respectively. The mechanism is similar in the two compounds and involves strong deformation of the metal-formate framework, especially pronounced for the subnetwork of CrO6 octahedra, accompanied by substantial compressibility of the DMA+ cations. Comparison with previous high-pressure Raman studies of sodium-chromium heterometallic MOFs show that the stability depends on the templated cation and increases as follows: ammonium < imidazolium < DMA+. Density functional theory (DFT) calculations are performed to get a better understanding of the structural properties leading to the existence of phase transitions. We calculate the energy of the hydrogen bonds (HBs) between the DMA+ cation and the metal formate cage, revealing a stronger interaction in the DMAKCr compound due to a HB arrangement that primarily involves the energetically preferred bonding to KO6 octahedra. This material however also has a smaller structural tolerance factor (TF) and a higher vibrational entropy than DMANaCr. This indicates a more flexible crystal structure, explaining the lower phase transition pressure, as well as the previously observed phase transition at 190 K, which is absent in the DMANaCr compound. The DFT high-pressure simulations show the largest contraction to be along the trigonal axis, leading to a minimal distortion of the HBs formed between the DMA+ cations and the metal-formate sublattice

    Heterometallic perovskite-type metal-organic framework with an ammonium cation: structure, phonons, and optical response of [NH4]Na0.5CrxAl0.5-x(HCOO)3 (x = 0, 0.025 and 0.5).

    Get PDF
    We report the synthesis, crystal structure, vibrational and luminescence properties of two heterometallic perovskite-type metal-organic frameworks (MOFs) containing the ammonium cation (NH4+, Am+): [NH4][Na0.5Cr0.5(HCOO)3] (AmNaCr) and [NH4][Na0.5Al0.475Cr0.025(HCOO)3] (AmNaAlCr) in comparison to the previously reported [NH4][Na0.5Al0.5(HCOO)3] (AmNaAl). The room-temperature crystal structure of AmNaCr and AmNaAlCr was determined to be R3[combining macron]. The hydrogen bonding (HB) energy calculated using density functional theory (DFT) agrees well with experimental data, and confirms the existence of almost identical H-bonding in AmNaCr and AmNaAl, with three short hydrogen bonds and a longer trifurcated H-bond. Temperature-dependent Raman measurements supported by differential scanning calorimetry show that AmNaCr does not undergo any structural phase transitions in the 80-400 K temperature range. The high-pressure Raman spectra of AmNaCr show the onset of two structural instabilities near 0.5 and 1.5 GPa. The first instability involves weak distortion of the framework, while the second leads to irreversible amorphization of the sample. High-pressure DFT simulations show that the unit cell of the AmNaCr compound contracts along the c axis, which leads to a shortening of the trifurcated H-bond. The optical properties show that both studied crystals exhibit Cr3+-based emission characteristic of intermediate ligand field strength

    Temperature-dependent Raman spectra of K0.2Na0.8NbO3 ceramics

    No full text
    We performed temperature-dependent Raman scattering studies on K0.2Na0.8NbO3 ceramics and compared the results with those for NaNbO3. The wavenumbers associated with NbO6 vibrations suggest the existence of two phase transitions, as occurs with pure NaNbO3 ceramics. Although the disorder on the Na/K site does not change either the room temperature phase of K0.2Na0.8NbO3 or the sequence of phase transitions compared with NaNbO3, it changes the temperature of the lowest phase transition and strongly modifies the temperature of the antiferroelectric --> new phase II phase transition. Additionally, the linewidth analysis shows that the orientational mechanism is the dominant contribution to linewidth, although the anharmonic contribution is increased, when compared with NaNbO3, owing to the random distribution of potassium in the sodium niobate matrix. Copyright (C) 2004 John Wiley Sons, Ltd

    Effect of Ni(II) doping on the structure of L-histidine hydrochloride monohydrate crystals

    No full text
    In this paper, we study the effect of Ni(II) doping on the structure of L-histidine hydrochloride monohydrate crystals using x-ray diffraction and Raman spectroscopy. X-ray powder diffraction shows no significant change in the unit cell parameters of the doped single crystal, whereas x-ray multiple diffraction using synchrotron radiation indicates that the Ni ions are located in interstitial positions in the crystal lattice. The temperature-dependent Raman spectra reveal a structural phase transition in the 10-300 K temperature range. The proposed mechanism of this phase transition supports the suggestion that the Ni ions occupy interstitial positions.202

    Structural and optical properties of rare earth-doped (Ba(0.77)Ca(0.23))(1-x)(Sm, Nd, Pr, Yb)(x)TiO(3)

    No full text
    The structural, dielectric, and vibrational properties of pure and rare earth (RE)-doped Ba(0.77) Ca(0.23)TiO(3) (BCT23; RE = Nd, Sm, Pr, Yb) ceramics obtained via solid-state reaction were investigated. The pure and RE-doped BCT23 ceramics sintered at 1450 degrees C in air for 4 h showed a dense microstructure in all ceramics. The use of RE ions as dopants introduced lattice-parameter changes that manifested in the reduction of the volume of the unit cell. RE-doped BCT23 samples exhibit a more homogenous microstructure due to the absence of a Ti-rich phase in the grain boundaries as demonstrated by scanning electron microscopy imaging. The incorporation of REs led to perturbations of the local symmetry of TiO(6) octahedra and the creation of a new Raman mode. The results of Raman scattering measurements indicated that the Curie temperature of the ferroelectric phase transition depends on the RE ion and ion content, with the Curie temperature shifting toward lower values as the RE content increases, with the exception of Yb(3+) doping, which did not affect the ferroelectric phase transition temperature. The phase transition behavior is explained using the standard soft mode model. Electronic paramagnetic resonance measurements showed the existence of Ti vacancies in the structure of RE-doped BCT23. Defects are created via charge compensation mechanisms due to the incorporation of elements with a different valence state relative to the ions of the pure BCT23 host. It is concluded that the Ti vacancies are responsible for the activation of the Raman mode at 840 cm(-1), which is in agreement with lattice dynamics calculations. (c) 2011 American Institute of Physics. [doi:10.1063/1.3594710

    A distinção contável-massivo e a expressão de número no sistema nominal The count-mass distinction and the expression of number within nominal systems

    No full text
    Este trabalho investiga a distinção contável-massivo entre os nomes comuns. Em particular, nos debruçamos sobre a distinção contável-massivo e sua relação com a morfologia de número. Defendemos que não existe uma correspondência tipológica necessária entre a ausência de marcação de número e a inexistência de uma distinção entre nomes contáveis e nomes massivos. Além disso, a classificação das abordagens da distinção contável-massivo proposta por Joosten (2002) é apresentada com a finalidade de mostrar que essa distinção pode ser tratada ou como uma distinção lexical entre as denotações dos nomes comuns ou como uma distinção entre tipos de sintagmas nominais.<br>This work investigates the count-mass distinction within natural language nominal systems. In particular, we focus on the count-mass distinction and its relation to number morphology. We claim that there is no necessary typological correlation between the lack of number marking and the nonexistence of a count-mass distinction for common nouns. Joosten's (2002) proposal is presented with the purpose of showing that the count-mass distinction can be treated either as a lexical distinction among the denotations of common nouns, or as a distinction among Noun Phrase constituents
    corecore