5 research outputs found

    Effect of freshwater influx on phytoplankton in the Mandovi estuary (Goa, India) during monsoon season: Chemotaxonomy

    Get PDF
    The Mandovi estuary is a prominent water body that runs along the west coast ofIndia. It forms an estuarine network with the adjacent Zuari estuary, connected via the Cumbharjua canal. The physico-chemical conditions seen in the Mandovi estuary are influenced by two factors: the fresh water runoff during the monsoon season (June-September) and the tidal influx of coastal seawater during the summer (October to May) season. However, the effects of monsoon related changes on the phytoplankton of the Mandovi estuary are not yet fully understood. An attempt to understand the same has been made here by applying the process of daily sampling at a fixed station throughout the monsoon season. It was noticed that the onset of the monsoon is responsible for an increase in nitrate levels upto 26 μM from <1 μM during pre-monsoon and enhancement of chlorophyll a (chl a) as high as 14 μg·L-1 during the same period. The phytoplankton population was observed through both chemotaxonomy and microscopy and was found to be composed mainly of diatoms. CHEMTAX analysis further uncovers the presence of several other groups of phytoplankton, the presence of which is yet to be reported in many other tropical estuaries. It includes chrysophytes, cyanobacteria, prasinophytes, prymnesiophytes and chlorophytes. The appearance of phytoplankton groups at various stages of the monsoon was recorded, and this data is discussed in relation to environmental changes in the Mandovi estuary during the monsoon season

    Comparison between phytoplankton bio-diversity and various indices for winter monsoon and inter monsoon periods in north-eastern Arabian Sea

    No full text
    1513-1518<span style="font-size:11.0pt;font-family: " times="" new="" roman","serif";mso-fareast-font-family:"times="" roman";mso-bidi-font-family:="" mangal;mso-ansi-language:en-gb;mso-fareast-language:en-us;mso-bidi-language:="" hi"="" lang="EN-GB">Phytoplankton samples of north-eastern Arabian Sea were collected during ocean colour satellite validation cruises from 2003-2007. Phytoplankton community organization and distribution was analyzed using various diversity indices like Shannon Diversity Index, Simpson Diversity Index, Margalef Diversity Index, McIntosh Diversity Index, Pielou Evenness Index and dominance index. Results showed that Navicula, Thalasiothrix and Rhizosolenia were most abundant among the diatoms. Trichodesmium, a cyanobacteria, dominated the shallow coastal waters. Resultant indices were correlated with phytoplankton cell counts and it was found that Shannons index better represents the diversity than other indices. Cell counts were also correlated with <i style="mso-bidi-font-style: normal">in situ chlorophyll-a values, which showed that this correlation does not stand good for the bloom conditions.</span

    Blooms of \u3ci\u3eNoctiluca miliaris\u3c/i\u3e in the Arabian Sea - An In Situ and Satellite Study

    No full text
    Phytoplankton cell density, chlorophyll a (chl a) concentration and pigment data collected during a series of five cruises in the northern Arabian Sea in the Northeast Monsoon (NEM, Nov-Jan) and the Spring Intermonsoon (SIM, Mar-May) since 2003 contradicted the established notion that winter blooms mainly consist of diatom communities. Recent data show that following the NEM and well into the SIM, phytoplankton populations are dominated by the dinoflagellate Noctiluca miliaris Suriray (synonym Noctiluca scintillans Macartney). In the SIM they were often in association with the well-known blooms of the diazotroph Trichodesmium sp. Large blooms of N. miliaris have also begun making their appearance annually in the Gulf of Oman and off the coast of Oman. This study uses NASA\u27s recently developed product of merged SeaWiFS and Aqua-MODIS chl a data to investigate the temporal evolution and spatial extent of these taxonomically validated blooms. Satellite chl a in relation to Aqua-MODIS SST and altimetry data suggest that mesoscale eddies that populate the western Arabian Sea during the NEM contribute to the genesis and dispersal of these blooms from the Gulf of Oman into the central Arabian Sea. (c) 2008 Elsevier Ltd. All rights reserved

    Cell-free chromatin particles released from dying host cells are global instigators of endotoxin sepsis in mice.

    No full text
    We have earlier reported that cell-free chromatin (cfCh) particles that are released from dying cells, or those that circulate blood, can readily enter into healthy cells, illegitimately integrate into their genomes and induce dsDNA breaks, apoptosis and intense activation of inflammatory cytokines. We hypothesized that sepsis is caused by cfCh released from dying host cells following microbial infection leading to bystander host cell apoptosis and inflammation which are perpetuated in a vicious cycle with release of more cfCh from dying host cells. To test this hypothesis we used three cfCh inactivating agents namely 1) anti-histone antibody complexed nanoparticles which inactivate cfCh by binding to histones; 2) DNase I which inactivates cfCh by degrading its DNA component, and 3) a novel pro-oxidant combination of Resveratrol and Copper which, like DNase I, inactivates cfCh by degrading its DNA component. Female C57 BL/6 mice, 6-8 weeks old, were administered a single i.p. injection of LPS at a dose of 10 mg/Kg or 20 mg/Kg with or without concurrent treatment with the above cfCh inactivating agents. Administration of cfCh inactivating agents concurrently with LPS resulted in prevention of following pathological parameters: 1) release of cfCh in extra-cellular spaces of brain, lung and heart and in circulation; 2) release of inflammatory cytokines in circulation; 3) activation of DNA damage, apoptosis and inflammation in cells of thymus, spleen and in PBMCs; 4) DNA damage, apoptosis and inflammation in cells of lung, liver, heart, brain, kidney and small intestine; 5) liver and kidney dysfunction and elevation of serum lactate; 6) coagulopathy, fibrinolysis and thrombocytopenia; 7) lethality. We conclude that cfCh that are released from dying host cells in response to bacterial endotoxin represents a global instigator of sepsis. cfCh inactivation may provide a novel approach to management of sepsis in humans
    corecore