4 research outputs found

    A VLA Study of Newly-Discovered Southern Latitude Non-Thermal Filaments in the Galactic Center: Radio Continuum Total-intensity and Spectral Index Properties

    Full text link
    The non-thermal filament (NTF) radio structures clustered within a few hundred parsecs of the Galactic Center (GC) are apparently unique to this region of the Galaxy. Recent radio images of the GC using MeerKAT at 1 GHz have revealed a multitude of faint, previously unknown NTF bundles (NTFBs), some of which are comprised of as many as 10 or more individual filaments. In this work we present Very Large Array (VLA) observations at C- and X-bands (4 - 12 GHz) at arcsecond-scale resolutions of three of these newly-discovered NTFBs, all located at southern Galactic latitudes. These observations allow us to compare their total-intensity properties with those of the larger NTF population. We find that these targets generally possess properties similar to what is observed in the larger NTF population. However, the larger NTF population generally has steeper spectral index values than what we observe for our chosen targets. The results presented here based on the total-intensity properties of these structures indicate that the NTFs are likely all formed from Cosmic Rays (CRs). These CRs are either generated by a nearby compact source and then diffuse along the NTF lengths or are generated by extended, magnetized structures whose magnetic field undergoes reconnection with the NTF magnetic field.Comment: 18 pages, 13 figures, 2 tables. Submitted to ApJ for peer-revie

    A VLA Polarimetric Study of the Galactic Center Radio Arc: Characterizing Polarization, Rotation Measure, and Magnetic Field Properties

    Full text link
    The Radio Arc is one of the brightest systems of non-thermal filaments (NTFs) in the Galactic Center, located near several prominent HII regions (Sickle and Pistol) and the Quintuplet stellar cluster. We present observations of the Arc NTFs using the S-, C-, and X-bands of the Very Large Array interferometer. Our images of total intensity reveal large-scale helical features that surround the Arc NTFs, very narrow sub-filamentation, and compact sources along the NTFs. The distribution of polarized intensity is confined to a relatively small area along the NTFs. There are elongated polarized structures that appear to lack total intensity counterparts. We detect a range of rotation measure values from -1000 to -5800 rad m−2\rm^{-2}, likely caused by external Faraday rotation along the line of sight. After correcting for Faraday rotation, the intrinsic magnetic field orientation is found to generally trace the extent of the NTFs. However, the intrinsic magnetic field in several regions of the Arc NTFs shows an ordered pattern that is rotated with respect to the extent of the NTFs. We suggest this changing pattern may be caused by an additional magnetized source along the line of sight, so that we observe two field systems superposed in our observations. We suggest that the large scale helical segments near the Radio Arc could be components of such a source causing these changes in intrinsic magnetic field, and some variations in the polarization and rotation measure values along the NTFs.Comment: PDF should be 24 pages with 13 figure

    The JWST Galactic Center Survey -- A White Paper

    Full text link
    The inner hundred parsecs of the Milky Way hosts the nearest supermassive black hole, largest reservoir of dense gas, greatest stellar density, hundreds of massive main and post main sequence stars, and the highest volume density of supernovae in the Galaxy. As the nearest environment in which it is possible to simultaneously observe many of the extreme processes shaping the Universe, it is one of the most well-studied regions in astrophysics. Due to its proximity, we can study the center of our Galaxy on scales down to a few hundred AU, a hundred times better than in similar Local Group galaxies and thousands of times better than in the nearest active galaxies. The Galactic Center (GC) is therefore of outstanding astrophysical interest. However, in spite of intense observational work over the past decades, there are still fundamental things unknown about the GC. JWST has the unique capability to provide us with the necessary, game-changing data. In this White Paper, we advocate for a JWST NIRCam survey that aims at solving central questions, that we have identified as a community: i) the 3D structure and kinematics of gas and stars; ii) ancient star formation and its relation with the overall history of the Milky Way, as well as recent star formation and its implications for the overall energetics of our galaxy's nucleus; and iii) the (non-)universality of star formation and the stellar initial mass function. We advocate for a large-area, multi-epoch, multi-wavelength NIRCam survey of the inner 100\,pc of the Galaxy in the form of a Treasury GO JWST Large Program that is open to the community. We describe how this survey will derive the physical and kinematic properties of ~10,000,000 stars, how this will solve the key unknowns and provide a valuable resource for the community with long-lasting legacy value.Comment: This White Paper will be updated when required (e.g. new authors joining, editing of content). Most recent update: 24 Oct 202

    Functional FLT1 genetic variation is a prognostic factor for recurrence in stage I-III non-small cell lung cancer

    Get PDF
    Acceso abierto en: http://dx.doi.org/10.1097/JTO.0000000000000549Background: We propose that single-nucleotide polymorphisms (SNPs) in genes of the vascular endothelial growth factor pathway of angiogenesis will associate with survival in non-small-cell lung cancer (NSCLC) patients. Methods: Fifty-three SNPs in vascular endothelial growth factor-pathway genes were genotyped in 150 European stage I-III NSCLC patients and tested for associations with patient survival. Replication was performed in an independent cohort of 142 European stage I-III patients. Reporter gene assays were used to assess the effects of SNPs on transcriptional activity. Results: In the initial cohort, five SNPs associated (q < 0.05) with relapse-free survival (RFS). The minor alleles of intronic FLT1 SNPs, rs7996030 and rs9582036, associated with reduced RFS (hazard ratio [HR] = 1.67 [95% confidence interval, CI, 1.22-2.29] and HR = 1.51 [95% CI, 1.14-2.01], respectively) and reduced transcriptional activity. The minor alleles of intronic KRAS SNPs, rs12813551 and rs10505980, associated with increased RFS (HR = 0.64 [0.46-0.87] and HR = 0.64 [0.47-0.87], respectively), and the minor allelic variant of rs12813551 also reduced transcriptional activity. Lastly, the minor allele of the intronic KRAS SNP rs10842513 associated with reduced RFS (HR = 1.65 [95% CI, 1.16-2.37]). Analysis of the functional variants suggests they are located in transcriptional enhancer elements. The negative effect of rs9582036 on RFS was confirmed in the replication cohort (HR = 1.69 [0.99-2.89], p = 0.028), and the association was significant in pooled analysis of both cohorts (HR = 1.67 [1.21-2.30], p = 0.0001). Conclusions: The functional FLT1 variant rs9582036 is a prognostic determinant of recurrence in stage I-III NSCLC. Its predictive value should be tested in the adjuvant setting of stage I-III NSCLC.Glubb, DM.; Pare-Brunet, L.; Jantus Lewintre, E.; Jiang, C.; Crona, D.; Etheridge, AS.; Mirza, O.... (2015). Functional FLT1 genetic variation is a prognostic factor for recurrence in stage I-III non-small cell lung cancer. Journal of Thoracic Oncology. 10(7):1067-1075. doi:10.1097/JTO.0000000000000549S1067107510
    corecore