4 research outputs found
Influence of antimicrobial solutions in the decontamination and adhesion of glass-fiber posts to root canals
AbstractObjective This study evaluated the effect of root canal disinfectants on the elimination of bacteria from the root canals, as well as their effect on glass-fiber posts bond strength.Material and Methods Fifty-three endodontically treated root canals had post spaces of 11 mm in length prepared and contaminated with E. faecalis. For CFU/ml analysis, eight teeth were contaminated for 1 h or 30 days (n=4). Teeth were decontaminated with 5% NaOCl, 2% CHX, or distilled water. As control, no decontamination was conducted. After decontamination, sterile paper points were used to collect samples, and CFU/ml were counted. For push-out, three groups were evaluated (n=15): irrigation with 2.5% NaOCl, 2% CHX, or sterile distilled water. A bonding agent was applied to root canal dentin, and a glass-fiber post was cemented with a dual-cured cement. After 24 h, 1-mm-thick slices of the middle portion of root canals were obtained and submitted to the push-out evaluation. Three specimens of each group were evaluated in scanning electron microscopy (SEM). Data were analyzed with one-way ANOVA and Dunnett’s T3 test (α=0.05).Results The number of CFU/ml increased from 1 h to 30 days of contamination in control and sterile distilled water groups. Decontamination with NaOCl was effective only when teeth were contaminated for 1 h. CHX was effective at both contamination times. NaOCl did not influence the bond strength (p>0.05). Higher values were observed with CHX (p<0.05). SEM showed formation of resin tags in all groups.Conclusion CHX showed better results for the irrigation of contaminated root canals both in reducing the bacterial contamination and in improving the glass-fiber post bonding
Biofilm biomass disruption by natural substances with potential for endodontic use
This study evaluated the in vitro effects of four natural substances on the biomass of bacterial biofilms to assess their potential use as root canal irrigants. The following substances and their combinations were tested: 0.2% farnesol; 5% xylitol; 20% xylitol; 0.2% farnesol and 5% xylitol; 0.2% farnesol, 5% xylitol, and 0.1% lactoferrin; 5% xylitol and 0.1% lactoferrin; and 20 mM salicylic acid. The crystal violet assay was used to evaluate the effects of these substances on the biomass of biofilms formed by Enterococcus faecalis and Staphylococcus epidermidis. All substances except for 20 mM salicylic acid and 20% xylitol reduced biofilm mass when compared to controls. The combination of farnesol and xylitol was the most effective agent against E. faecalis ATCC 29212 (p < 0.05). Farnesol combined with xylitol and lactoferrin was the most effective against biofilms of the endodontic strain of E. faecalis MB35 (p < 0.05). Similarly, combinations involving farnesol, xylitol, and lactoferrin reduced the biomass of S. epidermidis biofilms. In general, farnesol, xylitol, and lactoferrin or farnesol and xylitol reduced biofilm biomass most effectively. Therefore, it was concluded that combinations of antibiofilm substances have potential use in endodontic treatment to combat biofilms