3,975 research outputs found
Emission of Massive Scalar Fields by a Higher-Dimensional Rotating Black-Hole
We perform a comprehensive study of the emission of massive scalar fields by
a higher-dimensional, simply rotating black hole both in the bulk and on the
brane. We derive approximate, analytic results as well as exact numerical ones
for the absorption probability, and demonstrate that the two sets agree very
well in the low and intermediate-energy regime for scalar fields with mass
m_\Phi < 1 TeV in the bulk and m_\Phi < 0.5 TeV on the brane. The numerical
values of the absorption probability are then used to derive the Hawking
radiation power emission spectra in terms of the number of extra dimensions,
angular-momentum of the black hole and mass of the emitted field. We compute
the total emissivities in the bulk and on the brane, and demonstrate that,
although the brane channel remains the dominant one, the bulk-over-brane energy
ratio is considerably increased (up to 33%) when the mass of the emitted field
is taken into account.Comment: 28 pages, 18 figure
Remote Sensing and Control of Phase Qubits
We demonstrate a remote sensing design of phase qubits by separating the
control and readout circuits from the qubit loop. This design improves
measurement reliability because the control readout chip can be fabricated
using more robust materials and can be reused to test different qubit chips.
Typical qubit measurements such as Rabi oscillations, spectroscopy, and
excited-state energy relaxation are presented.Comment: 3 pages, 4 figure
Efficiency of alternative intensity measures for the seismic assessment of monolithic free-standing columns
This paper deals with the dynamic response of a free-standing ancient column in the Roman Agora of Thessaloniki, Greece as a means to shed more light on the complex behaviour of rocking bodies under seismic excitation. Numerical analyses utilizing discrete element method were carried out with the use of multiple seismic records selected based on the disaggregation of the seismic hazard for the region of interest. To identify their impact on structural performance, earthquake Intensity Measures, such as Peak Ground Acceleration and Peak Ground Velocity are examined for the case of a column that sustained no visible permanent deformations during the Ms = 6.5 Thessaloniki earthquake of 1978. The analysis revealed a weak correlation of PGA and PGV with the response results and a significant influence of the mean frequency (fm) of the seismic motion. No coupling was found between the maximum displacement of the top during the oscillation and the permanent post-seismic deformations. The complementarity of both earthquake Intensity Measures in the structural vulnerability assessment is also depicted
Covariation of vegetation and climate constrains present and future T/ET variability
The reliable partitioning of the terrestrial latent heat flux into evaporation (E) and transpiration (T) is important for linking carbon and water cycles and for better understanding ecosystem functioning at local, regional and global scales. Previous research revealed that the transpiration-to-evapotranspiration ratio (T/ET) is well constrained across ecosystems and is nearly independent of vegetation characteristics and climate. Here we investigated the reasons for such a global constancy in present-day T/ET by jointly analysing observations and process-based model simulations. Using this framework, we also quantified how the ratio T/ET could be influenced by changing climate. For present conditions, we found that the various components of land surface evaporation (bare soil evaporation, below canopy soil evaporation, evaporation from interception), and their respective ratios to plant transpiration, depend largely on local climate and equilibrium vegetation properties. The systematic covariation between local vegetation characteristics and climate, resulted in a globally constrained value of T/ET = ~70 ± 9% for undisturbed ecosystems, nearly independent of specific climate and vegetation attributes. Moreover, changes in precipitation amounts and patterns, increasing air temperatures, atmospheric CO2 concentration, and specific leaf area (the ratio of leaf area per leaf mass) was found to affect T/ET in various manners. However, even extreme changes in the aforementioned factors did not significantly modify T/ET
Enhancing Academic Engagement: Providing Opportunities for Responding and Influencing Students to Choose to Respond
Although educators often provide opportunities for students to engage in active academic responding, in many situations, students either cannot or will not respond. In the current article, we analyze the reasons students fail to respond. Practical procedures educators can use to prevent can\u27t do problems are provided. Won\u27t do problems are conceptualized as choice behaviors. Both applied and theoretical research on choice behavior provides the basis for recommendations designed to enhance the probability of students choosing to engage in active accurate academic (AAA) responding. Such procedures can increase skill development and achievement while decreasing inappropriate behaviors that are incompatible with AAA responding. School psychologists may utilize this information during the initial stages of collaborative problem solving (e.g., consultation) to help conceptualize problems. This conceptualization may then guide the assessment and intervention processes
- …