46 research outputs found

    Blood and hair as non-invasive trace element biological indicators in growing rabbits

    Get PDF
    [EN] The suitability of blood and hair as non-invasive tools to monitor trace element contents was studied in 48 Hyla male growing rabbits. Three diets with increasing organic selenium (Se) addition (0.1, 0.5 and 2.5 mg/kg) were used to induce alterations in the concentrations of trace elements vs. an unsupplemented diet. In blood, a linear decrease in Co (P<0.001), Cu (P<0.001), Mn (P<0.05), Zn (P<0.05), Sb (P<0.001), As (P<0.001), Cr (P<0.001), Mo (P<0.001), Ni (P<0.001) and Cd (P<0.001) concentrations with increasing dietary Se was observed. In hair, a cubic effect of dietary Se on Co (P<0.01), Cu (P<0.05), Mn (P<0.001), Pb (P<0.05), Mo (P<0.05) and Cd (P<0.05) concentrations was found, while As, Cr and Ni concentrations decreased linearly (P<0.01, P<0.01 and P<0.001, respectively) with increasing dietary Se. Selenium was negatively correlated to Sb, As, Cr, Mo, Ni and Cd, (P<0.001) in blood, and to As (P<0.05), Cr, Ni (P<0.01) and Pb (P<0.05) in hair. The contents of Se, As, Cr and Ni in blood were highly correlated (P<0.001) to those in hair. Blood appeared to be more sensitive than hair in detecting small changes in the trace element profile in rabbits, as was indicated by the discriminant analysis. In conclusion, blood and hair can be suitable biological indicators of essential, toxic and potentially toxic trace element status in rabbits, particularly when used complementarily.The authors are grateful to NUEVO S.A. (N Artaki, Euboia, Greece) for providing Sel-Plex®. This research has not received any specific funding.Papadomichelakis, G.; Pappas, AC.; Zoidis, E.; Danezis, G.; Georgiou, KA.; Fegeros, K. (2019). Blood and hair as non-invasive trace element biological indicators in growing rabbits. World Rabbit Science. 27(1):21-30. https://doi.org/10.4995/wrs.2019.10654SWORD2130271Barbosa F.J., Tanus-Santos J.E., Gerlach R.F., Parsons P.J. 2005. A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environ. Health Persp., 113: 1669-1674. https://doi.org/10.1289/ehp.7917Bryan C.E., Christopher S.J., Balmer B.C., Wells R.S. 2007. Establishing baseline levels of trace elements in blood and skin of bottlenose dolphins in Sarasota Bay, Florida: implications for non-invasive monitoring. Sci. Total Environ., 388: 325-342. https://doi.org/10.1016/j.scitotenv.2007.07.046Čobanová K., Chrastinová Ľ., Chrenková M., Polačiková M., Formelová Z., Ivanišinová O., Ryzner M., Grešáková Ľ. 2018. The effect of different dietary zinc sources on mineral deposition and antioxidant indices inrabbit tissues World Rabbit Sci., 26: 241-248. https://doi.org/10.4995/wrs.2018.9206de Blas C., Mateos G.G. 2010. Feed formulation. In 'The Nutrition of the Rabbit (2nd ed.)'. C de Blas, J. Wiseman (Eds.) 222-231. CAB International: Wallingford, UK. https://doi.org/10.1079/9781845936693.0222De Temmerman L., Vanongeval L., Boon W., Hoenig M., Geypens M. 2003. Heavy metal content of arable soils in northern Belgium. Water Air Soil Poll., 148: 61-76. https://doi.org/10.1023/A:1025498629671FEDNA (2003). Fundación Española para el Desarrollo de la Nutrición Animal. In C. De Blas, G. G. Mateos, & P. G. Rebollar (Eds.), Tablas FEDNA de composición y valor nutritivo de alimentos para la fabricación de piensos (2nd ed.). Madrid, Spain: FEDNA.Georgiou C.A., Koupparis M.A. 1990. Automated flow injection spectrophotometric determination of para- and metasubstituted phenols of pharmaceutical interest based on their oxidative condensation with 1-nitroso-2-naphthol. Analyst, 115: 309-313. https://doi.org/10.1039/an9901500309Georgiou C.A., Danezis G.P. 2015. Elemental and isotopic mass spectrometry. In 'Advanced Mass Spectrometry for Food, Comprehensive Analytical Chemistry'. (Ed. Y Pico) 131-243. Elsevier: Amsterdam. https://doi.org/10.1016/B978-0-444-63340-8.00003-0Glynn A.W., Ilback N.G., Brabencova D., Carlsson L., Enqvist E.C., Netzel E., Oskarsson A. 1993. Influence of sodium selenite on 203Hg absorption, distribution and elimination in male mice exposed to methyl 203Hg. Biol. Trace Elem. Res., 39: 91-107. https://doi.org/10.1007/BF02783813Gulson B.L., Mizon K.J., Korsch M.J., Howarth D., Phillips A., Hall J. 1996. Impact on blood lead in children and adults following relocation from their source of exposure and contribution of skeletal tissue to blood lead. B. Environ. Contam. Tox., 56: 543-550. https://doi.org/10.1007/s001289900078Hasan M.Y., Kosanovic M., Fahim M.A., Adem A., Petroianu G. 2004. Trace metal profiles in hair samples from children in urban and rural region of the United Arab Emirates. Vet. Hum. Toxicol., 46: 119-121.He K. 2011. Trace elements in nails as biomarkers in clinical research. Eur. J. Clin. Invest., 41: 98-102.https://doi.org/10.1111/j.1365-2362.2010.02373.xKäkelä R., Käkelä A., Hyvärinen H. 1999. Effects of nickel chloride on reproduction of the rat and possible antagonistic role of selenium. Comp. Biochem. Physiol. C, 123: 27-37.https://doi.org/10.1016/S0742-8413(99)00006-7Kan C.A., Meijer G.A.L. 2007. The risk of contamination of food with toxic substances present in animal feed. Anim. Feed Sci. Technol., 133: 84-108. https://doi.org/10.1016/j.anifeedsci.2006.08.005Keil D.E., Berger-Ritchie J., McMillin G.A. 2011. Testing for toxic elements: a focus on arsenic, cadmium, lead, and mercury. Labmedicine, 42: 735-742. https://doi.org/10.1309/LMYKGU05BEPE7IAWKlotz L.O., Kröncke K.D., Buchczyk D.P., Sies H. 2003. Role of copper, zinc, selenium and tellurium in the cellular defense against oxidative and nitrosative stress. J. Nutr., 133: 1448-1451. https://doi.org/10.1093/jn/133.5.1448SLevander O.A. 1977. Metabolic interrelationships between arsenic and selenium. Environ. Health Persp., 19: 159-164. https://doi.org/10.1289/ehp.7719159López-Alonso M.L., Benedito J.L., Miranda M., Castillo C., Hernández J., Shore R.F. 2002. Cattle as biomonitors of soil arsenic, copper and zinc concentrations in Galicia (NW Spain). Arch. Environ. Contam. Toxicol., 43: 103-108. https://doi.org/10.1007/s00244-002-1168-5McDowell L.R. 2003. 'Minerals in animal and human nutrition (2nd ed)'. (Elsevier Science: Amsterdam).Milošković A., Simić V. 2015. Arsenic and other trace elements in five edible fish species in relation to fish size and weight and potential health risks for human consumption. Pol. J. Environ. Stud., 24: 199-206. https://doi.org/10.15244/pjoes/24929Miranda M., López-Alonso M., Castillo C., Hernández J., Benedito J.L. 2005. Effects of moderate pollution on toxic and trace metal levels in calves from a polluted area of northern Spain. Environ. Int., 31: 543-548.https://doi.org/10.1016/j.envint.2004.09.025Ohta H., Seki Y., Yoshikawa H. 1995. Interactive effects of selenium on chronic cadmium toxicity in rats. ACES Bulletin, 8: 97-104. Othman A.I., El Missiry M.A. 1998. Role of selenium against lead toxicity in male rats. J. Biochem. Mol. Toxic., 12: 345-349. https://doi.org/10.1002/(SICI)1099-0461(1998)12:6%3C345::AID-JBT4%3E3.0.CO;2-VPapadomichelakis G., Zoidis E., Pappas A.C., Mountzouris K.C., Fegeros K. 2017. Effects of increasing dietary organic selenium levels on meat fatty acid composition and oxidative stability in growing rabbits. Meat Sci., 131: 132-138. https://doi.org/10.1016/j.meatsci.2017.05.006Papadomichelakis G., Zoidis E., Pappas A.C., Danezis G., Georgiou C.A., Fegeros K. 2018. Dietary organic selenium addition and accumulation of toxic and essential trace elements in liver and meat of growing rabbits. Meat Sci., 145: 383-388. https://doi.org/10.1016/j.meatsci.2018.07.022Pappas A.C., Zoidis E., Georgiou C.A., Demiris N., Surai P.F., Fegeros K. 2011. Influence of organic selenium supplementation on the accumulation of toxic and essential trace elements involved in the antioxidant systemof chicken. Food Addit. Contam. Part A, 28: 446-454. https://doi.org/10.1080/19440049.2010.549152Park D.U., Kim D.S., Yu S.D., Lee K.M., Ryu S.H., Kim S.G. et al. 2014. Blood levels of cadmium and lead in residents near abandoned metal mine areas in Korea. Environ. Monit. Assess., 186: 5209-5220. https://doi.org/10.1007/s10661-014-3770-1Patra R.C., Swarup D., Naresh R., Kumar P., Nandi D., Shekhar P., Roy S., Ali S.L. 2007. Tail hair as an indicator of environmental exposure of cows to lead and cadmium in different industrial areas. Ecotoxicol. Environ. Saf., 66: 127-131. https://doi.org/10.1016/j.ecoenv.2006.01.005Paukert J., Obrusnik I. 1986. The hair of the common hare (Lepus europaeus Pall.) and of the common vole (Microtus arvalis Pall.) as indicator of the environmental pollution. J. Hyg. Epidem. Microb. Imm., 30: 27-32.Paulsson K., Lundbergh K. 1989. The selenium method for treatment of lakes for elevated levels of mercury in fish. Sci. Total Environ., 87-88: 495-507. https://doi.org/10.1016/0048-9697(89)90256-8Perrone L., Moro R., Caroli M., Universit S., Fisiche S., Federico N. 1996. Trace elements in hair of healthy children sampled by age and sex. Biol. Trace Elem. Res., 51: 71-76. https://doi.org/10.1007/BF02790149Raab A., Hansen H.R., Zhuang L.Y., Feldmenn J. 2002. Arsenic accumulation and speciation analysis in wool from sheep exposed to arsenosugars. Talanta, 58: 167-176.https://doi.org/10.1016/S0039-9140(02)00257-6Reis L.S.L.S., Pardo P.E., Camargo A., Oba E. 2010. Mineral element and heavy metal poisoning in animals. Int. J. Med. Med. Sci., 1: 560-579.Rogowska K.A., Monkiewicz J., Grosicki A. 2009. Lead, cadmium, arsenic, copper, and zinc contents in the hair of cattle living in the area contaminated by a copper smelter in 2006-2008. B. Vet. I. Pulawy, 53: 703-706.Samanta G., Sharma R., Roychowdhury T., Chakraborti D. 2004. Arsenic and other elements in hair, nails, and skinscales of arsenic victims in West Bengal, India. Sci. Total Environ., 326: 33-47. https://doi.org/10.1016/j.scitotenv.2003.12.006Sanna E., Liguori A., Palmas L., Sor M.R., Floris G. 2003. Blood and hair lead levels in boys and girls living in two Sardinian towns at different risks of lead pollution. Ecotoxicol. Environ. Saf., 55: 293-299. https://doi.org/10.1016/S0147-6513(02)00072-6Sarmani S. 1987. A study of trace elements concentrations in human hair of some local population in Malaysia. J. Radioanal. Nucl. Chem., 110: 627-632. https://doi.org/10.1007/BF02035551Shanker K., Mishra S., Srivastava S., Srivastava R., Dass S., Prakash S., Srivastava M.M. 1996. Study of mercuryselenium (Hg-Se) interactions and their impact on Hg uptake by the radish (Raphanus sativus) plant. Food Chem. Toxic., 34: 883-886.https://doi.org/10.1016/S0278-6915(96)00047-6Shen S., Li X.F., Cullen W.R., Weinfeld M., Le X.C. 2013. Arsenic binding to proteins. Chem. Rev., 113: 7769-7792. https://doi.org/10.1021/cr300015cSoudani N., Amara I.B., Sefi M., Boudawara T., Zeghal N. 2011. Effects of selenium on chromium (VI)-induced hepatotoxicity in adult rats. Exp. Toxicol. Pathol., 63: 541-548. https://doi.org/10.1016/j.etp.2010.04.005Templeton G.F. 2011. A two-step approach for transforming continuous variables to normal: implications and recommendations for IS research. Commun. Assoc. Inf. Syst., 28: 41-58. https://doi.org/10.17705/1CAIS.02804Underwood E.J., Suttle N.F. 1999. 'The mineral nutrition of livestock (3rd ed.)'. CAB International: Wallingford, UK. 343-373. https://doi.org/10.1079/9780851991283.0000Valko M., Morris H., Cronin M.T.D. 2005. Metals, toxicity and oxidative stress. Curr. Med. Chem., 12: 1161-1208. https://doi.org/10.2174/0929867053764635Waegeneers N., Pizzolon J.C., Hoenig M., De Temmerman L. 2009. Accumulation of trace elements in cattle from rural and industrial areas in Belgium. Food Addit. Contam. A, 26: 326-332. https://doi.org/10.1080/02652030802429096Wangher P.D. 2001. Selenium and the brain: a review. Nutr. Neurosci., 4: 81-97. https://doi.org/10.1080/1028415X.2001.11747353Xing R., Li Y., Zhang B., Li H., Liao X. 2017. Indicative and complementary effects of human biological indicators for heavy metal exposure assessment. Environ. Geochem. Hlth., 39: 1031-1043. https://doi.org/10.1007/s10653-016-9870-9Zoidis E., Pappas A.C., Georgiou C.A., Komaitis Ε., Feggeros K. 2010. Selenium affects the expression of GPx4 and catalase in the liver of chicken. Comp. Biochem. Physiol. B, 155: 294-300. https://doi.org/10.1016/j.cbpb.2009.11.017Żukowska J., Biziuk M. 2008. Methodological evaluation of method for dietary heavy metal intake. J. Food Sci., 73: 21-29. https://doi.org/10.1111/j.1750-3841.2007.00648.

    Altered drop jump landing biomechanics following eccentric exercise-induced muscle damage

    Get PDF
    © 2021 The Authors. Published by MDPI. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.3390/sports9020024Limited research exists in the literature regarding the biomechanics of the jump-landing sequence in individuals that experience symptoms of muscle damage. The present study investigated the effects of knee localized muscle damage on sagittal plane landing biomechanics during drop vertical jump (DVJ). Thirteen regional level athletes performed five sets of 15 maximal eccentric voluntary contractions of the knee extensors of both legs at 60◦/s. Pelvic and lower body kinematics and kinetics were measured preand 48 h post-eccentric exercise. The examination of muscle damage indicators included isometric torque, muscle soreness, and serum creatine kinase (CK) activity. The results revealed that all indicators changed significantly following eccentric exercise (p< 0.05). Peak knee and hip joint flexion as well as peak anterior pelvic tilt significantly increased, whereas vertical ground reaction force (GRF), internal knee extension moment, and knee joint stiffness significantly decreased during landing (p< 0.05). Therefore, the participants displayed a softer landing pattern following knee-localized eccentric exercise while being in a muscle-damaged state. This observation provides new insights on how the DVJ landing kinematics and kinetics alter to compensate the impaired function of the knee extensors following exercise-induced muscle damage (EIMD) and residual muscle soreness 48 h post-exercise.This research was supported by the postdoctoral scholarship program implemented by University of Thessaly (Greece) and funded by the Stavros Niarchos Foundation, grant number 5394.02.02Published versio

    Riociguat treatment in patients with chronic thromboembolic pulmonary hypertension: Final safety data from the EXPERT registry

    Get PDF
    Objective: The soluble guanylate cyclase stimulator riociguat is approved for the treatment of adult patients with pulmonary arterial hypertension (PAH) and inoperable or persistent/recurrent chronic thromboembolic pulmonary hypertension (CTEPH) following Phase

    The Consciousness-Intelligence-Knowledge Pyramid: An 8x8 Layer Model

    No full text
    Cognitive and metacognitive skills are recognized and studied since antiquity. From the theory of Aristotle, according to which knowledge is product of the human mind and Platonic gnosiology and the theory of true knowledge, to the modern cognitive science, the question of how people acquire knowledge, has occupied a multitude of scientists. In this article we present a cognitive-based approach to the process of acquiring knowledge, we analyze the dominant theories of knowledge, theories of intelligence, as well as learning theories, and thus we propose an eight-layer pyramid of knowledge. We also analyze the cognitive processes and metacognitive skills required to get an individual to the highest layer of the knowledge pyramid

    Computerized Training for Neuroplasticity and Cognitive Improvement

    No full text
    The research area of brain plasticity studies indicates that individuals can train and improve their cognitive abilities throughout life. In addition, more and more computerized training tools are presented in recent studies. The purpose of this study is to represent studies of the last decade in the field of cognitive training with the use of Information and Communication Tech-nologies, to record the cognitive improvement techniques used, as well as to evaluate the effectiveness of these intervention programs. As indicated by the literature review, computer-based tools, mobile training apps and video games could be used in intervention studies for cognitive improve-ment. In addition, cognitive training techniques seem to be significantly ef-fective for the cognitive improvement of healthy or cognitive impaired in-dividuals

    An Eight-Layer Model for Mathematical Cognition

    No full text
    In recent years, more and more researchers have been investigating mathematical knowledge, as well as the cognitive skills that seem to be related to the improvement of mathematical thinking, numerical skills, mathematical logic and problem solving techniques. In this paper, we present the cognitive processes that are related to mathematical performance, such as working memory, anxiety, attention, spatial cognition, executive function and phonological awareness. In addition, we refer to metacognitive skills and their role in controlling and regulating cognitive processes, in order to improve mathematical performance. Finally, we present a new taxonomy of mathematical skills, the pyramid of mathematical cognition, as well as their gradual development through the appropriate cognitive and metacognitive mechanisms

    An Eight-Layer Model for Mathematical Cognition

    Get PDF
    In recent years, more and more researchers have been investigating mathematical knowledge, as well as the cognitive skills that seem to be related to the improvement of mathematical thinking, numerical skills, mathematical logic and problem solving techniques. In this paper, we present the cognitive processes that are related to mathematical performance, such as working memory, anxiety, attention, spatial cognition, executive function and phonological awareness. In addition, we refer to metacognitive skills and their role in controlling and regulating cognitive processes, in order to improve mathematical performance. Finally, we present a new taxonomy of mathematical skills, the pyramid of mathematical cognition, as well as their gradual development through the appropriate cognitive and metacognitive mechanisms

    Policies, Practices, and Attitudes toward Inclusive Education: The Case of Greece

    No full text
    Inclusive education is now firmly established as the main educational policy for children with special educational needs and disabilities, which emerges as the mean of creating an inclusive society in which equal opportunities are provided. However, there are concerns expressed on the effect of such a change in the educational system and on how possible it is to make this a reality. The concerns and objections of educators toward inclusion are mainly based on the diversity of learning disabilities, the learning outcomes that could be generated by applying this practice, and the lack of confidence of teachers to teach in an inclusive environment. In this study, we examine teachers&rsquo; attitudes toward inclusive education, while at the same time, we analyze current inclusive policies and practices in the Greek educational system. Results revealed that teachers have generally positive attitudes toward inclusion. However, they indicated some issues and barriers to the implementation of inclusion. We consider that policy-makers in Greece should target educator training and increase funding for education

    Enhanced Assessment Technology and Neurocognitive Aspects of Specific Learning Disorder with Impairment in Mathematics.

    No full text
    Specific Learning Disorder with impairment in Mathematics (Developmental Dyscalculia) is a complex learning disorder which affects arithmetic skills, symbolic magnitude processing, alertness, flexibility in problem solving and maintained attention. Neuro-cognitive studies revealed that such difficulties in children with DD could be related to poor Working Memory and attention deficits. Furthermore, neuroimaging studies indicate that brain structure differences in children with DD compared to typically developing children could affect mathematical performance. In this study we present the cognitive profile of Dyscalculia, as well as the neuropsychological aspects of the deficit, with special reference to the utilization of enhanced assessment technology such as computerized neuropsychological tools and neuroimaging techniques

    Enhanced Assessment Technology and Neurocognitive Aspects of Specific Learning Disorder with Impairment in Mathematics.

    No full text
    Specific Learning Disorder with impairment in Mathematics (Developmental Dyscalculia) is a complex learning disorder which affects arithmetic skills, symbolic magnitude processing, alertness, flexibility in problem solving and maintained attention. Neuro-cognitive studies revealed that such difficulties in children with DD could be related to poor Working Memory and attention deficits. Furthermore, neuroimaging studies indicate that brain structure differences in children with DD compared to typically developing children could affect mathematical performance. In this study we present the cognitive profile of Dyscalculia, as well as the neuropsychological aspects of the deficit, with special reference to the utilization of enhanced assessment technology such as computerized neuropsychological tools and neuroimaging techniques
    corecore