25 research outputs found

    Porcine Reproductive and Respiratory Syndrome (PRRSV2) Viral Diversity within a Farrow-to-Wean Farm Cohort Study

    Get PDF
    Describing PRRSV whole-genome viral diversity data over time within the host and within-farm is crucial for a better understanding of viral evolution and its implications. A cohort study was conducted at one naïve farrow-to-wean farm reporting a PRRSV outbreak. All piglets 3-5 days of age (DOA) born to mass-exposed sows through live virus inoculation with the recently introduced wild-type virus two weeks prior were sampled and followed up at 17-19 DOA. Samples from 127 piglets were individually tested for PRRSV by RT-PCR and 100 sequences were generated using Oxford Nanopore Technologies chemistry. Female piglets had significantly higher median Ct values than males (15.5 vs. 13.7, Kruskal-Wallis p < 0.001) at 3-5 DOA. A 52.8% mortality between sampling points was found, and the odds of dying by 17-19 DOA decreased with every one unit increase in Ct values at 3-5 DOA (OR = 0.76, 95% CI 0.61-0.94, p = 0.01). Although the within-pig percent nucleotide identity was overall high (99.7%) between 3-5 DOA and 17-19 DOA samples, ORFs 4 and 5a showed much lower identities (97.26% and 98.53%, respectively). When looking solely at ORF5, 62% of the sequences were identical to the 3-5 DOA consensus. Ten and eight regions showed increased nucleotide and amino acid genetic diversity, respectively, all found throughout ORFs 2a/2b, 4, 5a/5, 6, and 7

    Phylogenetic Structure and Sequential Dominance of Sub-Lineages of PRRSV Type-2 Lineage 1 in the United States

    Get PDF
    The genetic diversity and frequent emergence of novel genetic variants of porcine reproductive and respiratory syndrome virus type-2 (PRRSV) hinders control efforts, yet drivers of macro-evolutionary patterns of PRRSV remain poorly documented. Utilizing a comprehensive database of >20,000 orf5 sequences, our objective was to classify variants according to the phylogenetic structure of PRRSV co-circulating in the U.S., quantify evolutionary dynamics of sub-lineage emergence, and describe potential antigenic differences among sub-lineages. We subdivided the most prevalent lineage (Lineage 1, accounting for approximately 60% of available sequences) into eight sub-lineages. Bayesian coalescent SkyGrid models were used to estimate each sub-lineage’s effective population size over time. We show that a new sub-lineage emerged every 1 to 4 years and that the time between emergence and peak population size was 4.5 years on average (range: 2–8 years). A pattern of sequential dominance of different sub-lineages was identified, with a new dominant sub-lineage replacing its predecessor approximately every 3 years. Consensus amino acid sequences for each sub-lineage differed in key GP5 sites related to host immunity, suggesting that sub-lineage turnover may be linked to immune-mediated competition. This has important implications for understanding drivers of genetic diversity and emergence of new PRRSV variants in the U.S

    Potential Novel N-Glycosylation Patterns Associated with the Emergence of New Genetic Variants of PRRSV-2 in the U.S

    Get PDF
    Glycosylation of proteins is a post-translational process where oligosaccharides are attached to proteins, potentially altering their folding, epitope availability, and immune recognition. In Porcine reproductive and respiratory syndrome virus-type 2 (PRRSV-2), positive selection pressure acts on amino acid sites potentially associated with immune escape through glycan shielding. Here, we describe the patterns of potential N-glycosylation sites over time and across different phylogenetic lineages of PRRSV-2 to better understand how these may contribute to patterns of coexistence and emergence of different lineages. We screened 19,179 PRRSV GP5 sequences (2004&ndash;2021) in silico for potential N-glycosylated sites. The emergence of novel combinations of N-glycosylated sites coincided with past PRRSV epidemics in the U.S. For lineage L1A, glycosylation at residues 32, 33, 44, 51, and 57 first appeared in 2012, but represented &gt;62% of all L1A sequences by 2015, coinciding with the emergence of the L1A 1-7-4 strain that increased in prevalence from 8 to 86% of all L1A sequences from 2012 to 2015. The L1C 1-4-4 strain that emerged in 2020 also had a distinct N-glycosylation pattern (residues 32, 33, 44, and 51). From 2020 to 2021, this pattern was responsible for 44&ndash;47% of the L1C sequences, contrasting to &lt;5% in years prior. Our findings support the hypothesis that antigenic evolution contributes to the sequential dominance of different PRRSV strains and that N-glycosylation patterns may partially account for antigenic differences amongst strains. Further studies on glycosylation and its effect on PRRSV GP5 folding are needed to further understand how glycosylation patterns shape PRRSV occurrence

    Porcine Reproductive and Respiratory Syndrome (PRRSV2) Viral Diversity within a Farrow-to-Wean Farm Cohort Study

    No full text
    Describing PRRSV whole-genome viral diversity data over time within the host and within-farm is crucial for a better understanding of viral evolution and its implications. A cohort study was conducted at one naïve farrow-to-wean farm reporting a PRRSV outbreak. All piglets 3–5 days of age (DOA) born to mass-exposed sows through live virus inoculation with the recently introduced wild-type virus two weeks prior were sampled and followed up at 17–19 DOA. Samples from 127 piglets were individually tested for PRRSV by RT-PCR and 100 sequences were generated using Oxford Nanopore Technologies chemistry. Female piglets had significantly higher median Ct values than males (15.5 vs. 13.7, Kruskal–Wallis p p = 0.01). Although the within-pig percent nucleotide identity was overall high (99.7%) between 3–5 DOA and 17–19 DOA samples, ORFs 4 and 5a showed much lower identities (97.26% and 98.53%, respectively). When looking solely at ORF5, 62% of the sequences were identical to the 3–5 DOA consensus. Ten and eight regions showed increased nucleotide and amino acid genetic diversity, respectively, all found throughout ORFs 2a/2b, 4, 5a/5, 6, and 7
    corecore