773 research outputs found

    On Developing a Writing System for Michif

    Get PDF
    To date no satisfactory writing system exists for Michif, a bilingual mixed language deriving from Southern Plains Cree and Metis French. Michif differs phonologically from both Southern Plains Cree and to a lesser extent from Metis French. Differing local phonetic norms further complicate transcription. The various systems proposed before the present either derive from English, French, and/or Standard Cree and thus imperfectly fit Michif or else rely on phonetic notation, which excludes most nonspecialist readers, including native speakers. Additionally, diacriticals and phonetic symbols transmit badly on the internet, affecting web sites, email, and academic material. The system here is still under elaboration but is acrophonic and consistent. It addresses vowel length and nasalized vowels as well as liaison consonants, the treatment of schwa and its deletion, Cree vowel-deletion, and some adfixes

    An Approach to the Simulation of International Oil Trade

    Get PDF
    This paper describes the Simulation Model for International Oil Trade (SMIOT) developed at IIASA in 1979. The model is designed to calculate balanced states for the oil market taking into account the conflicts of interests between exporters and between importers. One of the main objectives of this report is to discuss the philosophy behind this approach; particular attention is also paid to the gaming algorithm used to simulate the process of trade

    Experimental Definition and Validation of Protein Coding Transcripts in Chlamydomonas reinhardtii

    Get PDF
    Algal fuel sources promise unsurpassed yields in a carbon neutral manner that minimizes resource competition between agriculture and fuel crops. Many challenges must be addressed before algal biofuels can be accepted as a component of the fossil fuel replacement strategy. One significant challenge is that the cost of algal fuel production must become competitive with existing fuel alternatives. Algal biofuel production presents the opportunity to fine-tune microbial metabolic machinery for an optimal blend of biomass constituents and desired fuel molecules. Genome-scale model-driven algal metabolic design promises to facilitate both goals by directing the utilization of metabolites in the complex, interconnected metabolic networks to optimize production of the compounds of interest. Using Chlamydomonas reinhardtii as a model, we developed a systems-level methodology bridging metabolic network reconstruction with annotation and experimental verification of enzyme encoding open reading frames. We reconstructed a genome-scale metabolic network for this alga and devised a novel light-modeling approach that enables quantitative growth prediction for a given light source, resolving wavelength and photon flux. We experimentally verified transcripts accounted for in the network and physiologically validated model function through simulation and generation of new experimental growth data, providing high confidence in network contents and predictive applications. The network offers insight into algal metabolism and potential for genetic engineering and efficient light source design, a pioneering resource for studying light-driven metabolism and quantitative systems biology. Our approach to generate a predictive metabolic model integrated with cloned open reading frames, provides a cost-effective platform to generate metabolic engineering resources. While the generated resources are specific to algal systems, the approach that we have developed is not specific to algae and can be readily expanded to other microbial systems as well as higher plants and animals

    Composite fuel based on residue from tyre and secondary polymer pyrolysis

    Get PDF
    The article presents the analysis of obtaining high-quality molded solid fuel from waste that is a carbonaceous residue obtained by pyrolysis of automobile tyres and secondary polymers. Preliminary waste preparing, blending and briquetting have been carried out; fuel samples have been obtained; their strength characteristics have been studied; technical analysis has been carried out

    TIGER: Toolbox for integrating genome-scale metabolic models, expression data, and transcriptional regulatory networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several methods have been developed for analyzing genome-scale models of metabolism and transcriptional regulation. Many of these methods, such as Flux Balance Analysis, use constrained optimization to predict relationships between metabolic flux and the genes that encode and regulate enzyme activity. Recently, mixed integer programming has been used to encode these gene-protein-reaction (GPR) relationships into a single optimization problem, but these techniques are often of limited generality and lack a tool for automating the conversion of rules to a coupled regulatory/metabolic model.</p> <p>Results</p> <p>We present TIGER, a Toolbox for Integrating Genome-scale Metabolism, Expression, and Regulation. TIGER converts a series of generalized, Boolean or multilevel rules into a set of mixed integer inequalities. The package also includes implementations of existing algorithms to integrate high-throughput expression data with genome-scale models of metabolism and transcriptional regulation. We demonstrate how TIGER automates the coupling of a genome-scale metabolic model with GPR logic and models of transcriptional regulation, thereby serving as a platform for algorithm development and large-scale metabolic analysis. Additionally, we demonstrate how TIGER's algorithms can be used to identify inconsistencies and improve existing models of transcriptional regulation with examples from the reconstructed transcriptional regulatory network of <it>Saccharomyces cerevisiae</it>.</p> <p>Conclusion</p> <p>The TIGER package provides a consistent platform for algorithm development and extending existing genome-scale metabolic models with regulatory networks and high-throughput data.</p

    Reconciliation of Genome-Scale Metabolic Reconstructions for Comparative Systems Analysis

    Get PDF
    In the past decade, over 50 genome-scale metabolic reconstructions have been built for a variety of single- and multi- cellular organisms. These reconstructions have enabled a host of computational methods to be leveraged for systems-analysis of metabolism, leading to greater understanding of observed phenotypes. These methods have been sparsely applied to comparisons between multiple organisms, however, due mainly to the existence of differences between reconstructions that are inherited from the respective reconstruction processes of the organisms to be compared. To circumvent this obstacle, we developed a novel process, termed metabolic network reconciliation, whereby non-biological differences are removed from genome-scale reconstructions while keeping the reconstructions as true as possible to the underlying biological data on which they are based. This process was applied to two organisms of great importance to disease and biotechnological applications, Pseudomonas aeruginosa and Pseudomonas putida, respectively. The result is a pair of revised genome-scale reconstructions for these organisms that can be analyzed at a systems level with confidence that differences are indicative of true biological differences (to the degree that is currently known), rather than artifacts of the reconstruction process. The reconstructions were re-validated with various experimental data after reconciliation. With the reconciled and validated reconstructions, we performed a genome-wide comparison of metabolic flexibility between P. aeruginosa and P. putida that generated significant new insight into the underlying biology of these important organisms. Through this work, we provide a novel methodology for reconciling models, present new genome-scale reconstructions of P. aeruginosa and P. putida that can be directly compared at a network level, and perform a network-wide comparison of the two species. These reconstructions provide fresh insights into the metabolic similarities and differences between these important Pseudomonads, and pave the way towards full comparative analysis of genome-scale metabolic reconstructions of multiple species

    Modelling the influence of RKIP on the ERK signalling pathway using the stochastic process algebra PEPA

    Get PDF
    This paper examines the influence of the Raf Kinase Inhibitor Protein (RKIP) on the Extracellular signal Regulated Kinase (ERK) signalling pathway [5] through modelling in a Markovian process algebra, PEPA [11]. Two models of the system are presented, a reagent-centric view and a pathway-centric view. The models capture functionality at the level of subpathway, rather than at a molecular level. Each model affords a different perspective of the pathway and analysis. We demonstrate the two models to be formally equivalent using the timing-aware bisimulation defined over PEPA models and discuss the biological significance

    Functional States of the Genome-Scale Escherichia Coli Transcriptional Regulatory System

    Get PDF
    A transcriptional regulatory network (TRN) constitutes the collection of regulatory rules that link environmental cues to the transcription state of a cell's genome. We recently proposed a matrix formalism that quantitatively represents a system of such rules (a transcriptional regulatory system [TRS]) and allows systemic characterization of TRS properties. The matrix formalism not only allows the computation of the transcription state of the genome but also the fundamental characterization of the input-output mapping that it represents. Furthermore, a key advantage of this “pseudo-stoichiometric” matrix formalism is its ability to easily integrate with existing stoichiometric matrix representations of signaling and metabolic networks. Here we demonstrate for the first time how this matrix formalism is extendable to large-scale systems by applying it to the genome-scale Escherichia coli TRS. We analyze the fundamental subspaces of the regulatory network matrix (R) to describe intrinsic properties of the TRS. We further use Monte Carlo sampling to evaluate the E. coli transcription state across a subset of all possible environments, comparing our results to published gene expression data as validation. Finally, we present novel in silico findings for the E. coli TRS, including (1) a gene expression correlation matrix delineating functional motifs; (2) sets of gene ontologies for which regulatory rules governing gene transcription are poorly understood and which may direct further experimental characterization; and (3) the appearance of a distributed TRN structure, which is in stark contrast to the more hierarchical organization of metabolic networks
    corecore