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lll. Executive summary

Algal fuel sources promise unsurpassed yields in a carbon neutral manner that
minimizes resource competition between agriculture and fuel crops. Many challenges
must be addressed before algal biofuels can be accepted as a component of the fossil
fuel replacement strategy. One significant challenge is that the cost of algal fuel
production must become competitive with existing fuel alternatives. Algal biofuel
production presents the opportunity to fine-tune microbial metabolic machinery for an
optimal blend of biomass constituents and desired fuel molecules. Genome-scale model-
driven algal metabolic design promises to facilitate both goals by directing the utilization
of metabolites in the complex, interconnected metabolic networks to optimize production
of the compounds of interest.

Using Chlamydomonas reinhardtii as a model, we developed a systems-level
methodology bridging metabolic network reconstruction with annotation and
experimental verification of enzyme encoding open reading frames. We reconstructed a
genome-scale metabolic network for this alga and devised a novel light-modeling
approach that enables quantitative growth prediction for a given light source, resolving
wavelength and photon flux. We experimentally verified transcripts accounted for in the
network and physiologically validated model function through simulation and generation
of new experimental growth data, providing high confidence in network contents and
predictive applications. The network offers insight into algal metabolism and potential for
genetic engineering and efficient light source design, a pioneering resource for studying
light-driven metabolism and quantitative systems biology.

Our approach to generate a predictive metabolic model integrated with cloned open
reading frames, provides a cost-effective platform to generate metabolic engineering
resources. While the generated resources are specific to algal systems, the approach
that we have developed is not specific to algae and can be readily expanded to other
microbial systems as well as higher plants and animals.



IV. A comparison of the Actual accomplishments with the goals and objectives of
the project

Our stated Specific Aims were: 1) Experimentally verify/define transcript structure(s) of
metabolic genes; 2) identify protein-protein interaction among the metabolic gene
products; 3) build protein interaction maps and metabolic networks.

During the course of the project, we have expanded some areas of the proposed work,
reduced certain areas, and added additional experiments and analyses as needed.
These changes are as follows: 1) Development of a functional annotation pipeline to
functionally annotate Chlamydomonas reinhardtii proteome; 2) introduction of next-
generation sequencing to more effectively sequence ORFs and verify structural
annotations; 3) expansion of our ORF cloning efforts; 4) expansion of constraint-based
metabolic modeling; 5) omission of yeast-two hybrid experiments from the project.

Briefly, upon intimation of the project in 2007, we recognized numerous gaps in the
existing KEGG functional annotation. We therefore devised an in-house functional
annotation pipeline and annotated first the JGI v3.1 proteome, JGI v4.0, and Augustus 5
proteomes. We expanded our cloning efforts. We initiated our work on JGI 3.1 ORFs
and carried out cloning and RACE on a set of core metabolic ORFs. However, during the
course of the project, two new annotations were released: JGI 4.0 and Augustus 5. We
carried out cloning efforts on both sets of metabolic ORFs from these annotations
(subsequently published in BMC Genomics, 2011, PMID: 21810206, and Mol. Sys. Biol.,
2011, PMID: 21811229). To improve structural verification of these ORFs we carried out
multiple runs of 454FLX sequencing in addition to conventional high throughput Sanger
sequencing.

We excluded construction of protein-protein interaction network while we expanded or
metabolic modeling efforts. We first reconstructed a core metabolic network (designated
as iAM303) accounting for 259 reactions using the JGI 3.1 structural annotation. This
work was published in Nature Methods (PMID: 19597503). We then reconstructed a
genome-scale network (designated as iRC1080), and experimentally verified all
Augustus 5 annotated transcripts in the model. The genome-scale reconstruction of the
metabolic network was published in Mol. Syst. Biol. in 2011 (PMID: 21811229).

V. Summary of project activities for the entire period of funding

A.1 Integration of transcript verification and central metabolic network
reconstruction

Given the close relationship between gene annotation and metabolic network
reconstruction, we developed a novel targeted and iterative strategy, integrating
experimental transcript verification with genome-scale computational modeling. Here,
an initial metabolic network reconstruction, generated based on existing literature
sources and bioinformatics-generated functional annotation, serves to identify C.
reinhardtii genes in need of experimental definition and validation. We perform Reverse-
Transcription PCR (RT-PCR) and Rapid Amplification of cDNA ends (RACE) to verify
existence of hypothetical transcripts, and to provide refinements to structural gene
annotations. Results of transcript verification experiments are applied directly toward
refining the metabolic model, with a focus on eliminating reactions associated with
experimentally unverified transcripts. Gaps in pathways are filled using alternative sets



of enzymes, or else further attempts and alternative approaches are used to identify
transcripts associated with the necessary reactions. Further, pathways may be added
and expanded to yield a more complete metabolic model which serves as the basis for
another round of transcript verification experiments and network modeling. Iterative
refinement continues until the network and its associated genes are fully developed and
validated. As the process moves forward, the resulting network model can be used to
identify targets for metabolic engineering, and the generated clone resource can be used
to test these hypotheses in vivo.

A.2. EC assignment to JGI v3.1 transcripts

To begin this iterative process, functional annotation of the v3.1 C. reinhardtii genome
sequence was needed. Because the Enzyme Commission (EC) annotation was only
available for a previous version of the genome (JGI v3.0), we generated our own EC
annotations. Using the publicly available C. reinhardtii version 3.1 transcripts (JGI v3.1,
ftp://ftp.jgi-psf.org/pub/JGI_data/Chlamy/v3.1/Chlre3_1.fasta.gz), EC numbers were
assigned by BLAST sequence comparison of in silico translated v3.1 transcripts against
the UniProt-SwissProt database and the complete Arabidopsis thaliana proteome data
set (http://proteomics.arabidopsis.info/). The UniProt-SwissProt database contained a
set of ~120,000 proteins from over 5,000 species carrying 2,321 EC terms; the A.
thaliana proteome data set catalogued 1,800 proteins which were assigned to 498
unique EC numbers. Our merged annotations from the two data sets yielded assignment
to 929 unique EC terms for the translated JGI v3.1 transcripts, 206 of which were
common to both UniProt and Arabidopsis. Of the EC terms common to both databases,
189 (or 91.7%) were supported by both UniProt “high confidence” values (at least 40%
identity and BLAST score of 50 or higher) and A. thaliana orthology, and only a small
portion (17 transcripts or 8.25%) showed a discrepancy. Our new annotation includes
many EC terms missing from existing annotation, yielding functional differences in
metabolic pathways. For example, glycerate kinase (EC 2.7.1.31) is needed for function
of Chlamydomonas metabolism, but absent from the existing online database (JGI v3.0).
In addition, five EC terms used for production of triacylglycerol, a glyceride of interest for
biofuel purposes, are included in our new annotation but not in existing annotations.

A.3. Reconstruction of Chlamydomonas central metabolism

Having assigned EC annotation for the translated JGI v3.1 transcripts, we reconstructed
the central metabolism of C. reinhardtii, integrating literature sources with the Kyoto
Encyclopedia of Genes and Genomes (KEGG,
http://www.genome.jp/kegg/pathway.html) to establish the structure of pathways
included in the metabolic network. We further drew on our newly generated EC
annotation of JGI v3.1 to establish the set of enzymes to be included in the network
model. Finally, KEGG, ExPASYy (http://ca.expasy.org/enzyme/) and other literature
sources were used to delineate stoichiometry of the included reactions. The resulting
metabolic network model specifies the full stoichiometry of central carbon flow in C.
reinhardltii, accounting for all cofactors and metabolite connections. The reconstruction
accounts for reaction localization primarily in the cytosol, mitochondria and chloroplast,
including the lumen as a subcompartment of the chloroplast for photosynthesis, and with
additional reactions localized to the glyoxysome and the flagellum. Localization
evidence was obtained mainly by literature sources and supplemented by subcellular
localization predictions. Transport reactions were included to allow for the presence of
metabolites in multiple compartments, inferring the correct form of transport reactions
using literature evidence where possible, and supplementing with information from
online databases where appropriate. Because stoichiometry of all metabolites is
accounted for explicitly, our mathematical representation of the reconstruction using



matrix algebra allows prediction of physiological and metabolic phenotypes based on
defined environmental conditions in silico. Of the 69 unique EC terms contained within
the initial reconstruction and used to guide transcript verification experiments (please
see section A.4.), 65 were present within our annotated C. reinhardtii v3.1 proteome.
The four missing EC terms (1.1.1.28, 1.2.7.1, 1.3.99.1, and 6.2.1.5) could be assigned to
homologous C. reinhardltii proteins but matched better to reference proteins bearing
different EC numbers; consequently, they could not be assigned unambiguously.

Working with the EC assignments generated by our group, we pooled the 174 transcripts
corresponding to 65 unique EC numbers accounted for in the initial version of the
metabolic network. The EC assignments for these transcripts were further confirmed by
assigning enzymatic and other associated domains to their respective protein products
using sensitive profile-based sequence search encoding programs like HMMER, by
which we specifically assigned domain families of the Pfam database, and PSI-BLAST.

A.4. Experimental verification of central metabolic open reading frames (ORFs)

Having accurately assigned functional annotation to these transcripts, we experimentally
verified them in two ways. First, RT-PCR was performed with primers corresponding to
putative ORFs of the central metabolic transcripts. The successful Gateway cloning and
sequencing of an ORF, as either a minipool or single colony, is evidence for the
presence of the hypothesized transcript, while failure is most often due to annotation
errors of the ORF termini. Second, we carried out RACE on ORFs that either could not
be cloned via RT-PCR or were confirmed only at one end, with the aim of correcting
ORF termini annotation errors. Using RT-PCR, we were able to confirm 78% of the
tested JGI v3.1 ORF models in the central model. Analysis of the RACE results indicated
confirmation of 53% and refinement of 24% of the RT-PCR failed ORFs. We were able
to verify 90% and refine structural annotation of 5% of central metabolic ORFs.
Altogether, these results provided experimental evidence for 172 metabolic ORFs (or
99% of the examined ORFs). Our experimental verification of ORF models guides
refinement of the generated metabolic model in the next cycle of our iterative
methodology. The generated ORF clones serve as a resource for downstream studies.
Our iterative process includes both computational and experimental components which
may be performed in parallel. Accordingly, while experiments were underway, we
further expanded the metabolic network reconstruction to include more complete
coverage of all pathways included in the initial model. While the initial reconstruction
only included four enzymes of glyoxylate metabolism necessary for acetate uptake (EC
4.1.3.1,2.3.3.8, 2.3.3.9, 6.2.1.1), the final reconstruction includes 19 reactions in this
pathway, and reflects a more complete curation of literature and genomic evidence for
this pathway.

A.5. Network validation

After updating the metabolic network reconstruction based on transcript verification, we
further validated the model by comparing in silico predictions to literature-reported
values using flux balance analysis and flux variability analysis for a variety of
environmental conditions and knockouts. Validating model predictions against reported
literature values allows us to assess whether the metabolic network provides qualitative
and quantitative predictions consistent with what is reported in the literature. Our
simulations comparing in silico predictions of physiological parameters under various
environmental conditions predicted dark aerobic acetate growth yield within 30% of the
literature derived value, indicated a dark anaerobic Formate:Ethanol:Acetate
fermentation ratio of 2:1:1 which matched the literature based value for dark anaerobic
conditions, supported the photosynthetic release of hydrogen gas coupled with optimal



biomass production , and showed photosynthetic oxygen uptake, evolution, and net
production closely paralleling experimental measurements. We also verified qualitative
agreement between in silico predictions and literature-based characterization for three
mutants with impaired use of acetate (EC 1.6.5.3, 1.9.3.1, 1.10.2.2), two mutants with
restricted photosynthetic abilities (EC 4.2.1.1, 4.1.1.39), and one mutant with restricted
oxygen and hydrogen photoevolution. Correspondence of our in silico predictions with
literature-based physiological parameters, for the full network and under perturbation,
suggests novel predictions made to identify targets for metabolic engineering may be
viewed with more confidence.

The resulting network reconstruction, named iIAM303 per established convention,
accounts for 259 reactions corresponding to 106 distinct EC terms. Of the
experimentally tested JGI v3.1 transcripts corresponding to EC terms in the metabolic
model, only phosphofructokinase (PFK, EC 2.7.1.11) and the Rieske iron-sulfur protein
of ubiquinol-cytochrome-c oxidoreductase complex (EC 1.10.2.2) were not fully verified
by our RT-PCR or RACE experiments. Only one of the four transcripts corresponding to
PFK in our experimental test set was left unverified in our experiments. Similarly, one of
the three transcripts corresponding to ubiquinol-cytochome-c reductase complex (the
Rieske iron-sulfur protein) was left unverified. As our cell samples were grown under
constant light, these results suggest we have identified light/dark regulated forms of
transcripts corresponding to these enzymes in C. reinhardtii, evidence for which has
been documented with PFK in the blue-green algae Synechocystis sp. Although any
evidence drawn from cyanobacteria is tentative, the fact that the unverified transcript for
PFK was the only one mapped by subcellular localization prediction to the chloroplast
further indicates that light/dark regulation may also occur in the eukaryotic C. reinhardtii.
These findings indicate our integrative approach is flexible towards functional annotation
of differentially regulated transcripts and transcript variants.

B. Functional assignment of Augustus 5 and JGI v4 transcripts

Thus far, the described work was based on the JGI v3.0 genome assembly and v3.1
transcript models. However an improved assembly of the Chlamydomonas reinhardtii
genome became available from JGI (http://genome.jgi-psf.org/cgi-
bin/searchGM?db=Chlre4). We used the new JG/ “filtered transcript models”
(Chlre4_best_transcripts and Chlre4_best_proteins), and the Augustus 5 models
released through the JGI portal (http://genome.jqgi-psf.org/Chlre4/Chire4.home.html) for
both functional assignments and structural annotation verifications. Enzymatic functional
assignments were made by associating Enzyme Classification (EC) numbers through
reciprocal blast searches against UniProt enzyme database (with over 100,000 protein
entries). The best match for each translated ORF was identified (with an e-value
threshold of 10°) and the EC number from the UniProt best match was transferred on to
the ORF. We extended the EC assignments to the respective paralogs of the ORFs by
clustering ORFs using BLASTCLUST (sequence identity cut-off of 35% and sequence
length cut-off of 70%) within each annotation group (i.e., Augustus 5 and JGI filtered
models). Altogether, we were able to assign 970 EC numbers to 1,427 JG/ and to 1,874
Augustus models. Over 93% of the EC terms were assigned to both JG/ and Augustus
models. We then carried out all possible pairwise alignments between the JG/ and
Augustus transcripts that had been assigned the same EC numbers by the above-
mentioned procedure. In contrast to the high overlap between the two models in terms
of EC assignments, less than half of each set were found to be 100% identical in
sequence, indicating that the structural annotations of many of the two sets differ from
one another.




C. Experimental verification of the C. reinhardtii metabolic ORFeome

To experimentally verify annotation of the ORFs, we carried out two types of
experiments: First, targeted experiments in which RT-PCR was performed with primers
corresponding to putative ORFs and cloning of the resulting amplicons. Second, we
carried out whole transcriptome sequencing using the 454FLX platform. The latter was
done using three distinct growth conditions aiming to capture annotation information on
genes that may not be expressed under the condition that the cloning experiments were
carried out, and to obtain expression information on various genes under different
growth conditions.

For the Augustus annotated ORFs, we synthesized primers to amplify 2,776 ORFs,
including 248 transporters, 1,874 EC assigned ORFs, and 654 regulatory genes
(transcription factors and chromatin associated proteins). Our EC annotation of the JGI
transcript models identified 1,431 transcripts with putative enzymatic functions. Of
these, 645 ORFs had identical structure as the Augustus ORFs that we had assigned
enzymatic function to, we therefore did not re-synthesize primers for these overlapping
ORFs; however, we synthesized primers for the remaining 786 unique JGI ORFs.
Altogether we synthesized 3,421 pairs of primers for amplification and cloning of various
ORFs.

We grew C. reinhardtii under a permissive condition by providing light, organic carbon
sources and nitrogen (as ammonium chloride or other ammonium salts). RNA was
isolated from cells undergoing exponential growth. The isolated RNA was reverse
transcribed and used as template for amplification of the ORFs for which we had
designed primers for.

The amplified ORFs were cloned using recombinational cloning into pPDONR223 vector.
The Augustus metabolic and transporter ORFs were end sequenced by conventional
high-throughput Sanger sequencing. From 2,119 Augustus ORFs tested, we were able
to verify 1,408 ORFs by cloning and sequencing, while 711 cases could not be verified
confidently. In other words, based on this experiment, 66% of the Augustus ORFs could
be verified (please note the chromatin associated and transcription factors ORFs were
not included in this set).

As an alternative sequencing method, we carried out next generation sequencing (using
the 454FLX platform). We amplified the inserts of the cloned ORFs by PCR, fragmented
the amplicons, and carried out 454 sequencing. The obtained 454 reads were then
aligned to the ORF reference sequences to assess annotation accuracy.

Briefly, the 454 reads could cover 90-100% of the 61.4% of the JGI ORFs, 39.16% of the
Augustus ORFs, and 72.39% of ORFs common between the JGI and Augustus. These
results indicate that 1) the JGI models are more accurately annotated than the Augustus
models, and 2) ORFs that are common between the two annotations (i.e., JGI and
Augustus) are more accurately annotated than either the unique JGI or Augustus sets.

Because the experiments described in the previous section were “targeted” i.e., relied on
choice of primers used to amplify the ORFs, we carried out whole transcriptome
sequencing to sample the transcriptome without primer choice bias. We grew C.
reinhardtii under three different growth conditions: 1) permissive condition with acetate
and light, light and no acetate (light autotrophic growth), and dark plus acetate.
Messenger RNA was isolated from these cultures, fragmented, reverse transcribed, then
prepared as a library for 454FLX sequencing. We carried out two full 454 Titanium runs



for each condition. The obtained reads were then aligned to the Augustus and JGI
reference sequences to assess expression and annotation accuracy.

For the Augustus models, we obtained >90% coverage for 52 to 64% the ORF models
depending on the growth condition, while for the JGI, the numbers ranged from 60% to
73%. Therefore, consistent with the targeted verification results, we obtained higher
verification rates for the JGI ORF models as compared to the Augustus models,
indicating that the JGI models are more accurately annotated. Interestingly, between the
three growth conditions examined, the light - no acetate condition produced the highest
coverage rates for both JGI and Augustus models, suggesting upregulation of a
significant number of genes when organic carbon source is removed from the growth
medium.

D. Genome-scale reconstruction of Chlamydomonas metabolism network model

Beginning with our reconstruction of C. reinhardtii central metabolism, we added
pathways to the reconstruction one-by-one according to the list of target pathways
chosen for the reconstruction effort. To initiate reconstruction of each individual
pathway, KEGG and other classical biochemistry references were used as a starting
point, with functional EC annotation used to indicate which enzymes in the pathway were
genomically present. Each pathway was then manually curated using available literature
evidence from C. reinhardtii and related species to establish presence of particular
enzymes and associated reactions, reaction directionality, and cofactors involved in
particular reactions. Individual reactions were localized by experimental evidence as
reported in the literature, and supplemented with PASUB localization predictions as
needed.

After thorough manual curation of each pathway, we followed up with gap-filling to
account for dead-ends in conversion of included intermediates and cofactors. As a
general rule, enzymes absent from the EC annotation were only included in the network
reconstruction if (1) literature evidence was deemed sufficient to establish presence of
the enzymes, (2) only one reaction was needed to fill the gap between intermediates in
the pathway and available literature evidence did not contradict presence of the
associated enzyme, or (3) the reaction(s) were necessary for functionality of pathways
known to be present in C. reinhardtii.

Reaction assignment and localization for each pathway included in the network model
was followed by assignment of transporters needed for functional conversion of pathway
intermediates. Literature evidence and publicly available databases (e.g. TCDB and
TransportDB) were used as available to assign family and stoichiometry of transporters.
In the absence of other evidence, transporters were inferred from other organisms or
else assumed to take the form of passive diffusion.

Having reconstructed individual pathways of the network model, we took steps to
integrate these pathways. Initial and final reactants and products of each pathway were
investigated to identify potential dead-ends, and additional metabolic or transport
reactions were incorporated as appropriate. In addition to these manual quality control
steps for pathway integration, modeling based gap-filling was also performed in the
framework of flux balance analysis, with the addition of reactions needed for in silico
growth.



With a complete version of the metabolic network reconstruction in place, we performed
global quality controls, including elemental balancing and elimination of free energy
loops. Referencing the full protonated elemental composition in KEGG, we compiled an
E-matrix (Elemental matrix) containing elemental composition of all included metabolites.
This E-matrix was then combined with the S-matrix (Stoichiometric matrix, representing
all reactions in the model), and a check of E-S=0 ensured elemental balance for all
included reactions. Finally, our metabolic network reconstruction was evaluated with
extreme pathway analysis, and all type Ill pathways, or internal loops corresponding to
free energy consumption in the network, were removed.

The generated genome-scale reconstruction of C. reinhardtii, accounts for all pathways
and metabolic functions indicated by the latest release of the genome (JGI v4.0)
combined with our in-house generated functional annotation. The reconstruction
accounts for 1,080 genes, associated with 2,190 reactions, and includes 1068 unique
metabolites, and encompasses 83 subsystems distributed across10 compartments. As
the most comprehensive metabolic network reconstruction of C. reinhardtii to date, ours
is the first to account for three different wavelengths of light involved in photosynthesis
and includes considerable expansion of fatty acid metabolism over previous
reconstructions, with detail at the level of individual R-groups. Further, the metabolic
network reconstruction presented here provides a greater level of compartmentalization
than existing reconstructions of C. reinhardtii, with the inclusion of the lumen as a distinct
component of the chloroplast for photosynthetic functionality, and the eyespot used to
guide the flagella in phototaxis.

We have carried out simulations under a variety of growth conditions (e.g. acetate/no
acetate, light/no light, aerobic/anaerobic), and physiological validation of in silico gene
knockout against known mutant data for a variety of phenotypes (e.g. increased use of
acetate; light; CO,; nitrogen; and other media components, amino acid requiring, altered
color). In addition, we have detailed simulations demonstrating how photon absorption
and different wavelengths of light affect downstream metabolic processes, elucidating
the benefits of sunlight versus artificial light conditions. Our well-validated and
comprehensive genome-scale reconstruction of C. reinhardtii metabolism provides a
valuable quantitative and predictive resource for metabolic engineering toward improved
production of biofuels and other commercial targets.

VI. Products developed under the award
A. Publications

1. Nat. Methods. 2009 Aug;6(8):589-92. Metabolic network analysis integrated with
transcript verification for sequenced genomes. Manichaikul A, Ghamsari L, Hom EF, Lin
C, Murray RR, Chang RL, Balaji S, Hao T, Shen Y, Chavali AK, Thiele I, Yang X, Fan C,
Mello E, Hill DE, Vidal M, Salehi-Ashtiani K, Papin JA. (PMID: 19597503)

2. Biotechnol. J. 2010 Jul;5(7):660-70. Metabolic systems analysis to advance algal
biotechnology. Schmidt BJ, Lin-Schmidt X, Chamberlin A, Salehi-Ashtiani K, Papin, JA.
(PMID: 2066564 1)

3. BMC Genomics. 2011 Jun 15;12 Suppl 1:S4. Genome-wide functional annotation and
structural verification of metabolic ORFeome of Chlamydomonas reinhardtii. Ghamsari
L, Balaji S, Shen Y, Yang X, Balcha D, Fan C, Hao T, Yu H, Papin JA, Salehi-Ashtiani K.



(PMID: 21810206)

4. Mol. Syst. Biol. 2011 Aug 2;7:518. Metabolic network reconstruction of
Chlamydomonas offers insight into light-driven algal metabolism. Chang RL, Ghamsari
L, Manichaikul A, Hom EF, Balaji S, Fu W, Shen Y, Hao T, Palsson Bd, Salehi-Ashtiani
K, Papin JA. (PMID: 21811229)

B. Websites and other internet sites that provide public access to results of this
project.

1. http://www.bme.virginia.edu/csbl/downloads-chlamy.php

2. http://www.biomedcentral.com/1471-2164/12/S1/S4/additional

3. http://www.nature.com/msb/journal/v7/n1/suppinfo/msb201152 S1.html

C. Network or collaborations fostered.

The following collaborations were established in support of the project:

1. Harvard University, Andrew Murray lab

2. Cornell University, Haiyuan Yu Lab

3. University of Iceland and University of California, San Diego, Bernhard Palsson lab
4. University of Iceland, Ines Thiele lab

D. Technologies/Techniques.

We developed an integrated experimental and modeling approach to facilitate our
proposed work. This approach is described in section V of this document and is
published (please see Nat. Methods 2009 in publication list above)

E. Inventions/Patents.

None.

F. Other products (physical collections, models, etc).

1. Clones: As part of our efforts under this award, we have generated a substantial
number of cDNA clones. These clones are described in publications listed above (Mol.
Syst. Biol., 2011, PMID: 21811229; BMC Genomics 2011, PMID: 21810206). We intend

to submit these clones to Chlamydomonas Center (http://www.chlamy.org/) for public
distribution.

2. Models: We have generated two metabolic network models describing steady-state
metabolic fluxes in Chlamydomonas. The models, iIAM303 and iRC1080, describe the
central metabolism and global metabolism of C. reinhardltii respectively. Both models

are described in our peer-reviewed publications, validated, and are publically available
(please see above under section VI.A. and VI.B.). These models are provided as



standard SBML format as well as “.mat” format (please see Section VI.B). Metabolic
analyses on these models can be performed using the COBRA toolbox (publically
available from http://opencobra.sourceforge.net/openCOBRA/Welcome.html). The
COBRA toolbox runs within Matlab environment.

For background information (including methodology, assumptions, limitations, and
usage) on constraint based metabolic modeling used in this project, please see:

1. Methods Enzymol. 2011; 500:411-433. Whole-genome metabolic network
reconstruction and constraint-based modeling. Haggart CR, Bartell JA, Saucrman JJ,
Papin JA. (PMID: 21943909)

2. Nat. Protoc. 2011 Aug 4;6(9):1290-307. Quantitative prediction of cellular
metabolism with constraint-based models: the COBRA Toolbox v2.0. Schellenberger J,
Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE,
Rahmanian S, Kang J, Hyduke DR, Palsson BJ. (PMID: 21886097)

3. Mol. Sys. Biol. 2009; 500:61-80. Applications of genome-scale metabolic
reconstructions. Oberhardt MA, Palsson BP, Papin JA. (PMID: 19888215)
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With sequencing of thousands of organisms completed or in
progress, there is a growing need to integrate gene prediction
with metabolic network analysis. Using Chlamydomonas
reinhardtii as a model, we describe a systems-level methodology
bridging metabolic network reconstruction with experimental
verification of enzyme encoding open reading frames.

Our quantitative and predictive metabolic model and its
associated cloned open reading frames provide useful resources
for metabolic engineering.

Present availability of genome sequences for diverse micro-
organisms brings opportunities for metabolic engineering through
systems-level characterization of these organisms’ metabolic net-
works!. Such efforts require both functional and structural annota-
tion of metabolic components encoded within these genomes.
Although advances have been made in defining transcribed protein
coding sequences for widely studied eukaryotes, notable deficien-
cies in genome annotation remain”. These problems are evident in
the genomes of less widely studied species for which comparative
genomic information is scarce. Structural annotations of bound-
aries for many genes in newly sequenced genomes are often poorly
defined because of incomplete understanding of transcriptional-
initiation, termination and splicing rules, and deficiencies in gene-
prediction algorithms®. Genes with valid structural annotations
lack thorough functional annotations linking transcripts to enzy-
matic or regulatory activities of corresponding proteins®.

Given the close relationship between gene annotation and meta-
bolic network reconstruction’®, we propose a targeted iterative
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methodology, integrating experimental transcript verification
with genome-scale computational modeling (Fig. 1). An initial
metabolic network, generated using literature sources and bio-
informatics-generated functional annotation, served to identify
C. reinhardtii genes in need of experimental definition and valida-
tion. We performed reverse-transcription PCR (RT-PCR) and
rapid amplification of cDNA ends (RACE) to verify existence of
hypothetical transcripts and to refine structural annotations. We
used the results of transcript verification experiments to refine the
metabolic model, with a focus on eliminating reactions associated
with experimentally unverified transcripts. We filled resulting gaps
in pathways by incorporating alternative sets of enzymes and by
applying more detailed functional annotation to identify transcript
models associated with necessary reactions. We also added and
expanded pathways to yield a more complete metabolic model,
providing the basis for another round of transcript verification and
network modeling. Iterative refinement continued until the net-
work and its associated genes were fully developed and validated.

To begin our iterative process, functional annotation was needed
for current C. reinhardtii genome sequence. Because Enzyme
Commission (EC) annotation was only available for a previous
version of the genome (Joint Genome Institute (JGI) v3.0), we
generated our own annotations (Supplementary Note and Sup-
plementary Figs. 1,2). Using the publicly available C. reinhardtii
version 3.1 transcripts (JGI v3.1, ftp://ftp.jgi-psf.org/pub/JGI_data/
Chlamy/v3.1/Chlre3_1.fasta.gz), we assigned EC numbers by basic
local alignment search tool (BLAST) sequence comparison of
in silico-translated v3.1 transcripts against UniProt-SwissProt®
and the complete Arabidopsis thaliana proteome dataset. Our
new annotation (Supplementary Table 1) included EC terms
missing from existing annotation, yielding functional differences
in metabolic pathways (Fig. 2a,b). For example, six EC terms used
for production of triacylglycerol, a glyceride of interest for biofuel
purposes, were included in our new annotation but not in existing
annotations (Supplementary Table 2).

Having assigned EC annotation for the translated JGI v3.1
transcripts, we generated a central metabolic network reconstruc-
tion of C. reinhardtii, integrating literature-sourced data with our
newly generated EC annotation of JGI v3.1. We used the Kyoto
Encyclopedia of Genes and Genomes (KEGG), Expert Protein
Analysis System (ExPASy) and literature sources to delineate path-
way structure and reaction stoichiometry. The resulting metabolic
network model specified the full stoichiometry of central metabo-
lism in C. reinhardtii, accounting for all cofactors and metabolite
connections!, with reactions localized to the cytosol, mitochondria,
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chloroplast (including the lumen as a subcompartment for photo-
synthesis) glyoxysome and flagellum. We obtained the localization
evidence mainly from literature and supplemented it by subcellular
localization predictions’. We established transport reactions using
literature-sourced evidence where possible, supplementing it with
information from online databases where appropriate. Of the 69
unique EC terms contained within the initial reconstruction and
used to guide transcript verification experiments (Supplementary
Table 3), all but four were annotated in the C. reinhardtii v3.1
proteome. The missing EC terms (1.1.1.28, 1.2.7.1, 1.3.99.1 and
6.2.1.5) could be assigned to homologous C. reinhardtii proteins
but matched better to reference proteins bearing different EC
numbers, and so could not be assigned unambiguously.

We confirmed EC assignments for 174 transcripts by assigning
enzymatic domains to the protein products using hidden Markov
model-based software HMMER® (Supplementary Table 4) and
experimentally verified these transcripts in
two ways. First, we performed RT-PCR with
primers corresponding to putative open read-
ing frames (ORFs) encoding central meta-
bolic enzymes (Supplementary Table 5). The
successful cloning and a matched sequence’
of an ORF to its predicted model indicated
the presence of the hypothesized transcript,
whereas failure in this task was most often
due to annotation errors of ORF termini.
Second, we carried out RACE on ORFs that
either could not be cloned via RT-PCR or
were confirmed only at one end, with the
aim of correcting ORF termini annotation
errors. Using RT-PCR, we confirmed 78%
of the tested JGI v3.1 ORF models, and
RACE allowed confirmation of 53% and
refinement of 24% of the ORFs that we
could not verify by RT-PCR. Altogether, we
verified 90%, refined structural annotation

a

Existing annotation
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Figure 1 | Assessing and improving gene
annotation for C. reinhardtii: iterative process
integrating gene annotation experiments with
metabolic network reconstruction and analysis.
Starting with a draft network reconstruction, EC
terms associated with model reactions are mapped
to corresponding transcripts. Experimentally
verified transcripts are used to propose changes in
structural annotation, along with functional
annotation changes that motivate refinements in
the network reconstruction. The reconstructed
metabolic network is then used to motivate another

Metabolic . g e .
round of transcript verification experiments.

model
hypotheses

of 5% and provided experimental evidence
for 99% of the 174 examined ORFs encoding
central metabolic enzymes (Fig. 2¢ and Sup-
plementary Table 4). Our experimental veri-
fication of ORF models guided refinement of
the metabolic model in the next cycle of our
iterative methodology, and generated ORF
clones can be used for downstream studies.

We expanded the metabolic network
reconstruction to include more complete
coverage of all pathways included in the initial model. For example,
the glyoxylate metabolism pathway in our initial network recon-
struction included only four enzymes needed for acetate uptake,
but our final reconstruction included 16 enzymes, reflecting more
complete curation of this pathway. After additionally updating
the metabolic network reconstruction with transcript verification
results, we validated the model by comparing in silico predictions
to quantitative literature-based physiological parameters under a
variety of environmental conditions and qualitative literature-
based characterization of known mutants (Supplementary Note,
Supplementary Tables 6,7 and Supplementary Fig. 3). Agreement
between in silico predictions and existing experimental data brought
confidence to predictions of metabolic engineering targets (Supple-
mentary Fig. 4).

The resulting network reconstruction, named iAM303 per estab-
lished convention'?, accounted for 259 reactions corresponding to

b N tati I = Verified
Acetate-P 2721 Acetate ewannotation only = Reannotation
New and existing . o
2318 6.2.1.1 Partially verified
o - u Not verified
Acetyl-CoA 2331 Citrate 5% 4%1%
OAA 4213
34 11137 Isocitrate
Malate 4134
2339 | |
Gilyoxy alteSuccinate

90%

Figure 2 | Integrating the network model with transcript verification experiments. (a) Comparison of
central metabolic EC terms annotated in existing JGI v3.0 and our annotation of JGI v3.1 (Supplementary
Note). (b) Applying these two versions of EC annotation to inform the network reconstruction yielded
functional differences in core metabolic pathways, as illustrated in acetate uptake pathways inferred from
the two sets of annotation. As acetate is the sole carbon source used by wild-type C. reinhardtii in vivo,
these pathway differences translate directly to measureable growth phenotypes. (c) Results summary for
verification and structural annotation of C. reinhardtii central metabolic transcripts by RT-PCR and RACE.
‘Partially verified’ denotes cases for which the assembled ORF did not completely match the genome
sequence or a complete sequence could not be assembled.
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Table 1 | EC terms guiding reconciliation of literature, modeling and experimental evidence

Modeling evidence®

Light

Enzyme name Pathway(s) Literature Dark Dark with

(EC number)  affected evidence aerobic anaerobic Light acetate PSI-BLAST hit(s) Action
Absent in our L-lactate Pyruvate Yes WT WT WT WT estExt_fgenesh2_pg.C_190058  Perform transcript
annotation of dehydrogenase  metabolism verification for
JGI v3.1 translated  (1.1.1.27) functional matches
transcripts b-lactate Pyruvate Yes WT WT WT WT  Chlre2_kg.scaffold_1000146 identified by

dehydrogenase  metabolism PSI-BLAST

(1.1.1.28)

L-lactate Pyruvate None WT WT WT WT estExt_gwp_1H.C_90212

dehydrogenase, metabolism

cytochrome

(1.1.2.3)

Pyruvate Pyruvate Yes WT N WT WT e_gwWT.62.37.1

synthase metabolism

(1.2.7.1)

Succinate Photosynthesis; Yes WT WT WT WT  fgenesh2_pg.C_scaffold_1000904

dehydrogenase  TCA cycle estExt_fgenesh2_pg.C_30248

(1.3.99.1)

Limit dextrinase Starch Yes R N R R fgenesh2_pg.C_scaffold_33000007

(3.2.1.142) metabolism

Oxalate Glyoxylate None WT WT WT WT estExt_fgenesh2_pg.C_160183

decarboxylase ~ metabolism

(4.1.1.2)

Succinyl-CoA TCA cycle Yes R WT WT WT estExt_GenewiseH_1.C_190100

ligase (6.2.1.5) estExt_fgenesh2_kg.C_130058
One or more Phosphofructo-  Glycolysis Yes WT N WT WT Analysis not performed because  Perform transcript
experimentally kinase (2.7.1.11) transcripts were already verification for
unverified transcript Ubiquinol Oxidative Yes R WT R R identified for these enzymes cells grown in

models cytochrome ¢ phosphorylation
oxidoreductase

(1.10.2.2)

the dark

2WT, wild-type flux; R, reduced flux; and N, no flux.

We probed these ten EC terms through in silico knockout experiments under the four indicated environmental conditions. We interpreted reduced or zero flux through the objective
function to indicate the given enzyme was necessary or important under the stated environmental condition. Finally, we used PSI-BLAST to search more thoroughly for EC terms with
no corresponding transcripts in our annotation JGI v3.1. Because PSI-BLAST identified alternative transcripts for each of these EC terms, none of the corresponding reactions were deleted

from the network reconstruction.

106 distinct EC terms (Supplementary Fig. 5, Supplementary
Tables 8,9 and Supplementary Data 1). Of the experimentally
tested JGI v3.1 transcripts corresponding to 65 unique EC terms
from the initial metabolic model, only phosphofructokinase and
the Rieske iron-sulfur protein of ubiquinol-cytochrome ¢ oxido-
reductase complex were not verified in our RT-PCR or RACE
experiments: we left unverified one of the four transcripts corre-
sponding to phosphofructokinase and one of the three transcripts
corresponding to ubiquinol-cytochome ¢ oxidoreductase complex
(the Rieske iron-sulfur protein) (Supplementary Table 4). As we
grew our cultures under constant light, these results suggest that
we identified light/dark-regulated forms of transcripts correspond-
ing to these enzymes, evidence for which has been documented for
phosphofructokinase in the cyanobacteria Synechocystis sp.!l.
Although any parallel drawn from cyanobacteria is tentative, that
the unverified phosphofructokinase transcript was the only one
mapped by subcellular localization prediction’ to the chloroplast
further indicates light/dark regulation may occur in the eukaryotic
C. reinhardtii. These findings indicate our integrative approach is

flexible toward functional annotation of differentially regulated
transcripts and transcript variants.

With ORF verification results for all annotated enzymes in
the current version of our metabolic network reconstruction, we
demonstrated a complete cycle of our iterative approach. Although
not all enzymes in the model could be completely validated experi-
mentally, we seek to recover these enzymes in the next round of
experiments. For enzymes present in the network reconstruction but
lacking functionally assigned transcripts in the C. reinhardtii genome,
we performed more detailed searches using position-specific iterative
BLAST (PSI-BLAST) to assign likely targets to corresponding EC
numbers (Table 1); newly assigned transcript models can be followed
up in the next iteration of experiments. EC terms annotated in JGI
v3.1 which were not fully verified by our RACE and RT-PCR tran-
script verification experiments, but are supported by both literature
and modeling evidence, suggest corresponding transcripts are pre-
sent in C. reinhardtii, particularly under dark conditions. In the next
round of experiments, we will attempt to verify these transcripts in
the absence of light. Our structural reannotation of transcripts will
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also inform reannotation of functional enzymatic domains needed
to refine and expand our metabolic network model.

Although throughput of our method is modest compared to
fully automated computational approaches, we achieved higher
quality structural and functional annotation for a targeted set of
metabolic enzymes. Accordingly, our integrative approach pro-
duced: (i) a well-validated metabolic network reconstruction of
C. reinhardtii, (ii) functional annotation needed to map the net-
work reconstruction to associated transcripts and (iii) experimen-
tally based structural annotation, providing the requisite toolset for
metabolic engineering toward improved biofuel production (Sup-
plementary Fig. 4). Whereas the latter does not provide direct
proof of function, it establishes the necessary condition upon which
functional assignments can be proposed, and targeted experiments
may be performed to verify function.

With only 1% of experimentally tested transcripts left unverified,
our effort provides proof of concept for the proposed approach
integrating network analysis with experimental transcript verifica-
tion. Because this success may be attributed in part to our focus on
central metabolism, enzymes and pathways of which are generally
the best characterized, our manual curation efforts will be even
more important in informing high-quality transcript annotation
refinement as we extend our metabolic model to the genome-wide
scale. Although our work has focused on C. reinhardtii, integration
of gene annotation experiments with network reconstruction can
be applied broadly toward improved annotation of existing and
emerging genome sequences. Our pipeline for functional annota-
tion based on existing annotation of A. thaliana provides a com-
putationally efficient approach to extract functional annotation for
species with one or more well-annotated close relatives. For new
genome sequences without availability of closely related reference
sequence, more sophisticated approaches, including PSI-BLAST
and hidden Markov model-based programs, may provide viable
alternatives. Although existing transcriptomic technologies lag behind
RT-PCR and RACE in their ability to provide well-defined ORF
structure and precise definition of exon-boundaries for eukaryotic
sequence data, emerging sequencing technologies'? open possibili-
ties to scale up the throughput of our methodology. Finally, we may
look beyond metabolic network modeling toward reconstruction of
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regulatory'® and signaling'* networks as alternative systems-level
frameworks to guide future efforts.

METHODS
Methods and any associated references are available in the online
version of the paper at http://www.nature.com/naturemethods/.

Note: Supplementary information is available on the Nature Methods website.
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ONLINE METHODS

Metabolic network reconstruction. The metabolic network
reconstruction begins with identification of key pathways to be
included in the central metabolic model. The basic structure of
these pathways was extracted from KEGG (http://www.genome.jp/
kegg/pathway.html). Reactions were localized to specific organelles
and compartments primarily using literature evidence. When no
literature evidence could be identified to localize a particular
reaction, we drew on subcellular localization predictions combined
with localization of neighboring reactions of the same pathway to
make a reasonable localization assignment. In the absence of any
literature-based localization information for an entire pathway, a
consensus of localization predictions for the entire pathway was
taken to ensure that neighboring reactions were connected.

Pathways were initially focused to reflect specific knowledge
about C. reinhardtii by excluding reactions for which no genes
encoding the corresponding enzyme (based on our group’s EC
annotation) were present in v3.1 of the genome. In a second pass,
pathways were supplemented with the addition of reactions
deemed necessary by gap analysis, and reactions having literature
evidence specifically relevant to C. reinhardtii were also included.
Stoichiometry of metabolic reactions was extracted from KEGG
or ExPASy (http://ca.expasy.org/enzyme/), and also supplemented
with key literature references on metabolism of C. reinhardtii and
related species when necessary. Because the assignment of trans-
porters is an area of metabolic network modeling with less direct
evidence available, we limited use of transport reactions to those
necessary to account for metabolites appearing in more than
one compartment. We then drew from literature evidence, where
available, to assign the stoichiometry of transport reactions. For
example, triose-phosphate transport is performed by antiport with
phosphate between the cytosol and the chloroplast'®>~!7. We also
used predictions from online databases (TransportDB, http://
www.membranetransport.org/; Transport Classification Database,
http://www.tcdb.org/) as a secondary source of evidence to infer
sodium-ion symport for 2-oxoglutarate and malate to the chloro-
plast, as well as to the mitochondria. Transporters for the remain-
ing set of metabolites for which there was no clear evidence were
assigned based on precedent from other organisms.

To develop a constraint-based model from the reconstructed
network, initially no assumptions were made limiting any reaction
flux in the network. Additional literature curation was performed
to assemble a set of Boolean constraints for reaction activity in
light or in the dark. For instance, it is known that certain plastidic
enzymes are subject to either light activation or inhibition
mediated via the thioredoxin system!8. Since a major source of
energy in C. reinhardtii is obtained through starch degradation,
especially in the dark, we also determined maximal starch degra-
dation rates from experimental values both in light and dark and
under aerobic and anaerobic conditions'®. The modeling con-
straints used for all simulations are reported in Supplementary
Table 9.

We evaluated our metabolic network reconstruction with
extreme pathway analysis, and all type III pathways, or internal
loops corresponding to free energy consumption in the network,
were removed?’. The stoichiometry of the full set of reactions in
the reconstruction was incorporated into an S-matrix, which was
imported to Matlab to perform growth simulations by flux balance
analysis using the COBRA toolbox?!. Flux balance analysis*? was

d0i:10.1038/nmeth.1348

used to simulate growth or survival of the organism by optimi-
zation of the precursor biomass reaction or an ATP demand
reaction, as appropriate. Proposed engineering strategies for
hydrogen production were achieved through flux variability ana-
lysis?® of the full set of reaction deletion mutants grown in silico
under light conditions and constrained to achieve a growth rate at
least 95% of the optimum (Supplementary Fig. 4, with full results
shown in Supplementary Table 10).

Subcellular localization prediction. The compartmentalization of
network reactions was guided by subcellular localization predic-
tions generated using PASUB, the Proteome Analyst Specialized
Subcellular Localization Server’. cDNA sequences for the experi-
mentally tested transcripts were translated using custom Perl
scripts and subjected to PASUB analysis. Given the dual plant-
and animal-like nature of the C. reinhardtii proteome?*, predic-
tions were generated using both “animal” and “plant” default
settings, providing localization information for all experimentally
tested transcripts (Supplementary Table 4). Using animal settings,
predictions were made with 9 possible subcellular compartments:
cytoplasm, endoplasmic reticulum, extracellular, Golgi, lysosome,
mitochondria, nucleus, peroxisome and plasma membrane. Using
plant settings, predictions were made with 10 possible subcellular
compartments: chloroplast, cytoplasm, endoplasmic reticulum,
extracellular, Golgi, mitochondria, nucleus, peroxisome, plasma
membrane and vacuole. Predictions involving the peroxisome or
vacuole were treated as predictions to the glyoxysome. Both
animal and plant predictions, along with associated enzyme
reaction characteristics, were used to manually assign subcellular
localization(s) for each transcript product.

Chlamydomonas reinhardtii strain and growth conditions.
C. reinhardtii strain CC-503 was used throughout our experiments.
C. reinhardtii cells were grown in Tris-acetate-phosphate (TAP)
medium containing 100 mg 1=! carbamicillin without agitation, at
room temperature (22-25 °C) and under continuous illumination
with cool white light at a photosynthetic photon flux of 60 pmol
m~2 s~ L. Cells from mid-log phase were collected by centrifugation
at 2,000 r.p.m. (650¢) for 10 min for RNA isolation.

Isolation of total RNA. Total RNA was isolated by the TRIzol
(Invitrogen Life Sciences) method and subsequently cleaned from
DNA using 0.08 U pl~! RNase-free DNase I enzyme (Ambion).
The quality of RNA was assessed on a 5% TBE-urea denaturing gel
(Bio-Rad Laboratories) and the concentration was measured
spectrophotometrically.

RT-PCR verification experiments. We carried out RT-PCR to
validate the central metabolic transcripts. The reverse transcription
of the C. reinhardtii total RNA was performed using Superscript III
reverse transcriptase (Invitrogen Life Sciences) and dT(;¢) as general
primer. The reaction mixture contained 1.2 M betaine (Sigma-
Aldrich) to prevent premature terminations owing to the high
G+C content of C. reinhardtii transcriptome. The resultant cDNAs
were amplified by PCR using KOD hot start DNA polymerase
(Novagen). As in the reverse transcription reaction, we included
1.2 M betaine in all PCRs to optimize the yield. Forward and reverse
Gateway-tailed primers were used to allow recombinational cloning’:
The forward primers were designed using the predicted ORF
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sequence starting at ATG of the annotated 5" end exon and were 5’-
tailed with the Gateway Bl.1 sequence. The gene-specific part of
each reverse primer was designed using the very 3’-end sequence of
the annotated 3" exon omitting stop codon and 3’-tailed with the
Gateway B2.1 sequence. All primers had a melting temperature (7,)
between 55 °C and 65 °C. The sequences of the primers are available
in Supplementary Table 5.

RACE verification experiments. We removed the cap structure
from C. reinhardtii mRNA. Total RNA was first dephosphorylated
using 1 U pl~! calf intestinal phosphatase (New England Bio-Labs)
to remove 5" phosphates from truncated mRNAs and non-mRNA
molecules. The dephosphorylated RNA was then treated with
0.5 U pl~! tobacco acid pyrophosphorylase (Epicentre Biotech-
nologies) to remove the cap structure from full length mRNAs.

To generate the templates for 5° RACE, an RNA oligo sequence
(GR-RNA) was ligated to the 5" end of the decapped RNA in a
reaction catalyzed by 1 U ul~! T4 RNA ligase I (New England
Biolabs). The decapped-ligated RNA was then reverse transcribed
by the dT(;4) GR3 primer and random hexamers. For 3” RACE
reactions, the dT(,4y GR3 primer was used to reverse transcribe
total RNA without addition of random hexamers. Both the RNA
oligo and dT(,4y GR3 primer sequences were derived from
Invitrogen GeneRace kit. cDNA synthesis was catalysed by Super-
script III reverse transcriptase in a reaction mixture contained
1.2 M betaine.

RACE amplicons were generated in two PCRs. To obtain
5’ ends, we amplified the cDNA using a forward general primer that
was homologous to the RNA oligo ligated to the 5 ends (GR5S).
Reverse primers were gene-specific (see Supplementary Table 5
for sequences) and were designed antisense to the putative ORF
region of the gene of interest. These primers were placed 300-350
bases 3’ to the putative start of the ORE. 3" ends were obtained
using GR3 (derived from Invitrogen GeneRacer kit) as general,
reverse primer and a forward, gene-specific primer (see Supple-
mentary Table 5 for sequences) that was designed sense relative to
the mRNA. The latter primer was placed 300-350 bases upstream
of the putative stop codon. To provide these PCRs with adequate
coverage of the transcriptome, the amount of reverse transcribed
template was adjusted such that equivalent of ~ 150 ng total RNA
was introduced to each reaction. PCR was performed as a ‘touch-
down’ PCR in which the annealing temperature of the first 5 cycles
was 65 °C, on average 5-10 degrees above the T;, of the gene-
specific primers. We used 0.5 pl of the first PCR product as
template to run the second set of PCRs, which also performed as
touchdown. A set of nested, tailed and proximal primers were used
in these PCR reactions. To amplify 5" ends we used GGRn5S as
forward, general nested primer. The primer was tailed with the
B1.1 Gateway sequence at its 5" end. The reverse primers were
nested gene-specific and were tailed with the Gateway B2.1
sequence (Supplementary Table 5). The 3’ ends were amplified
using GGRn3 as reverse general primer that was 3" Gateway-tailed
with the B2.1 sequence. The nested 3" RACE gene-specific primers
had the same general design as the 5" RACE primers, except that
they were in the forward orientation and contained a Gateway
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B1.1 tail (Supplementary Table 5). Nested PCR step increased
sensitivity and specificity of the experiment while providing
Gateway tails for cloning.

Gateway cloning and sequencing. PCR products generated in
RACE or in OREF verification experiments were recombinationally
cloned in a BP reaction into pDONR223 to generate Gateway
Entry clones®. Chemically competent DH50 E. coli was then
transformed with the BP reaction products in 96-well microtiter
plates containing spectinomycin as selection marker of cells
bearing entry clone. Following growth in liquid media, the
transformed bacteria were used as a source of template in PCR
reactions, containing 1.2 M betaine and KOD hot start DNA
polymerase (Novagen) to amplify the clones. Vector primers were
used to generate the final DNA template for sequencing. PCR
products were sequenced bidirectionally using conventional auto-
mated cycle sequencing to generate ORF sequence tags (OSTs)? or
RACE sequence tags (RSTs). 3 RACE products were sequenced
unidirectionally from 5" ends owing to the presence of poly(A)
tails. Sequencing was carried out by Agencourt Bioscience Corp.

Trace analysis: ORF sequence tags (OSTs). Forward and reverse
sequences were vector-clipped (using Cross_match), quality-trimmed,
then assembled. For quality trimming, we kept the longest continuous
sequence with average Phred score above 15 in a window of 20
nucleotides. We used Phrap (http://www.phrap.org/) to assemble
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Algal fuel sources promise unsurpassed yields in a carbon neutral manner that minimizes resource
competition between agriculture and fuel crops. Many challenges must be addressed before algal
biofuels can be accepted as a component of the fossil fuel replacement strategy. One significant
challenge is that the cost of algal fuel production must become competitive with existing fuel al-
ternatives. Algal biofuel production presents the opportunity to fine-tune microbial metabolic ma-
chinery for an optimal blend of biomass constituents and desired fuel molecules. Genome-scale
model-driven algal metabolic design promises to facilitate both goals by directing the utilization
of metabolites in the complex, interconnected metabolic networks to optimize production of the
compounds of interest. Network analysis can direct microbial development efforts towards suc-
cessful strategies and enable quantitative fine-tuning of the network for optimal product yields
while maintaining the robustness of the production microbe. Metabolic modeling yields insights
into microbial function, guides experiments by generating testable hypotheses, and enables the
refinement of knowledge on the specific organism. While the application of such analytical ap-
proaches to algal systems is limited to date, metabolic network analysis can improve understand-
ing of algal metabolic systems and play an important role in expediting the adoption of new bio-
fuel technologies.
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The use of microorganisms to produce compounds
of commercial value enjoys a rich history. Of recent
interest is the use of algae for the synthesis of nu-
traceuticals and biofuels. For example, high-value
molecules are extracted from microalgae, such as
carotenoid pigments and docosahexaenoic acid
(DHA), an o3 fatty acid [1]. Polysaccharides, sterols,
and polyunsaturated fatty acids are all nutraceuti-
cal compounds extracted from algae [2]. Large-
scale commercial culture of strains of Chlorella and
Arthospira as a nutritious food date back to the
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1960s and 1970s, respectively [1]. Table 1 lists a few
of the well-defined molecules of commercial value
that are purified from algal sources.

Microalgae hold promise as a source of renew-
able energy. Algae-derived hydrogen, methane, tri-
acylglycerols, and ethanol all serve as potential ma-
terials for biofuels [3-6]. For example, depending
on production conditions, Schizochytrium sp. and
Botryococcus braunii may yield 50-77% and 25-75%
oil by mass, respectively [3]. Algae oils are rich in
the triacylglycerols that serve as material for con-
version to biodiesel [3]. Some species of microal-
gae, such as Chlamydomonas reinhardtii, may pro-
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Table 1. Selected molecularly defined products currently isolated from microalgae

Name or family Structure Companies Commercialized species
Astaxanthin 0 Cyanotech [1] Haematococcus
OH
(food colorant, X N Mera Pharmaceuticals [1] pluvialis [1]
antioxidant [1]) o Bioreal [1]
o Parry’s Pharmaceuticals [1]
Algatech [1]
Docosahexaenoic acid o A = = Seambiotic Crypt‘l":ecodinium
(3 fatty acid, “ g « Martek Biosciences Corporation [1]  conhii [1]
cardiovascular health, HO OmegaTech [1] Shizochtrium sp. [1]
brain development [1]) Nutrinova [1] Ulkenia sp. [1]
Ethanol (biofuel Algenol Biofuels [70 Various cyanobacteria
(iofue) A oH genol Biofuels 70 y
Seambiotic
Inventure Chemical
Hydrogen (biofuel) H, Solarvest BioEnergy [70] Chlamydomonas
reinhardtii [71]
Triacylglycerols 0 Aurora Biofuels [70] Haematococcus

(biodiesel precursor)

B-Carotene

(food colorant, NN
provitamin A,

antioxidant [1])

Solarvest BioEnergy pluvialis [10, 7312
Seambiotic
Inventure Chemical

Solazyme [72]

Western Biotechnology [1]
Betatene [1]

Dunaliella salina [1]

a) Species data from published trial results by Aquasearch [10]. Additional species are likely suitable for biodiesel production [74], but the identity of algae employed

in new commercial ventures are not usually publicized.

duce hydrogen directly [4, 7]. Additionally, the dou-
bling time of microalgae in the exponential growth
phase is as short as 3.5 h, and they are efficient at
utilizing light to produce biomass, facilitating rapid
fuel production [4]. Although some algae may be
capable of utilizing biomass feedstocks as other mi-
crobes do, utilizing the photosynthetic route will
arguably be the most efficient means of biofuel
production [5].

Microalgal biofuel cultivation promises to be
highly sustainable. Importantly, microalgae are
much more distant from the human food chain
than plant crops, avoiding competition between
agricultural and biofuel resources [3]. As shown in
Table 2, biodiesel produced from photosynthetic
microalgae have a much higher yield than current
biofuels and can be cultured on marginal land, fur-
ther reducing the diversion of agricultural re-
sources. Additionally, some algae can be cultured
with saltwater or wastewater, avoiding use of fresh-
water resources [5]. Since microalgal fuel yields on

© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

an area basis are higher than currently possible
with crops, they are more capable of meeting fuel
demand [3]. Furthermore, microalgae cultures
have been demonstrated to fix carbon dioxide, and
may be utilized in the bioremediation of industrial
flue gases [8-10]. Algal fuels are therefore carbon
neutral, or carbon negative in the case of hydrogen.

Despite the advantages of algae as a source of
biofuels, there are still significant challenges that
must be addressed before algal biofuels can be
widely adopted. Although compatible with the ex-
isting fuel infrastructure, biodiesel from algae is
not yet economically competitive with fossil fuels
or corn ethanol (Table 2). For algae biodiesel pro-
duction, an additional challenge will be altering the
selected algae to produce triacylglycerol fatty acid
constituents with the optimal length and hydrocar-
bon saturation [5]. In this review article, we de-
scribe a systems level metabolic modeling ap-
proach that enables the generation of hypotheses
to modify algal metabolism towards more efficient
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Table 2. Comparison between gasoline, corn ethanol, microalgae biodiesel, and microalgae hydrogen as fuel sources

Biotechnol. J. 2010, 5, 660-670

Gasoline Corn ethanol Microalgae biodiesel Microalgae hydrogen
Energy [75] [75] [75] 7]
(BTU/gal) 118170 76300 116090 0.0458%
(k) /kg) 46000 27000 39000 142000
Low High Low High Low High
Yield N/A [76] [76] 5] 3] 7] 7]
(L/Ha/yr) 3970 5590 12000® 1369009 160 0009 830 000
(g/m?/day) 12 1.7 3.7 43 1.49 4.59)
Cost to produce 2009 est. 2007 est.[77] 2009 est.[78] 2004 est. [79]
$/gal 1.86" 1.69 2.5-258) $0.57/kg—$13.53 /kg
$/105BTU 15.7 22.1 21.5-215 4.2-100

Algae harvest 10 g/m?/day, 30% oil in biomass.

c) Algae harvest 60 g/m?/day, 70% oil in biomass.

d) Assumes the demonstrated 2% photoconversion efficiency.

e) Assumes the theoretical limit of 10.6% photoconversion efficiency.

) Reported values for hydrogen on a volumetric basis assume standard temperature and pressure.
)

f) Assumes the 2009 national average retail price of $2.31/gal (www.eia.doe.gov), corrected for a tax of $0.45/gal (www.api.org).

g) Range depends on algae productivity.

production of desired compounds. We describe how
such network models are constructed and present
a number of case studies in which network model-
ing has been carried out.

2 Insilico directed metabolic engineering
approaches facilitate economical
production schemes

Theoretically, the yield and synthesis rate of any
metabolite could be optimized through the process
of metabolic engineering. Metabolic engineering
can be described as the optimization of entire
metabolic or biosynthetic pathways through the
manipulation of the genetic content or environ-
mental context [11]. The advantages of utilizing in
silico directed metabolic engineering to optimize
microbial production processes over traditional
strain improvement methods have already been
demonstrated for commercially important mi-
crobes such as Saccharomyces cerevisiae [12]. Tra-
ditional methods of strain improvement include
many rounds of selection, mutagenesis, mating,
and hybridization [12]. Modeling approaches obvi-
ate this labor-intensive process and further mini-
mize the potential for the introduction and accu-
mulation of undesired mutations that may compro-
mise production conditions [12]. Metabolic engi-
neering can also exploit quantitative fine-tuning of
gene expression to optimize product yields [12].
Due to the required efficiency of the production
process and necessity to achieve high yields, meta-
bolic models may play an essential part in making
microalgal biofuel production commercially viable.

662 © 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Several examples where metabolic engineering
guided by large-scale mathematical models have
optimized the production of a desired metabolite
are presented in Table 3. Many of the models now
employed capture metabolic processes at a genome
scale [13].

The approaches taken for the production of
pharmaceutical compounds, especially biologics,
offer a significant contrast to what would be ex-
pected for successful methodology for biofuel pro-
duction. Pharmaceutical production often employs
genetic engineering approaches to overexpress a
single recombinant protein [11]. This approach
cannot be used to optimize production of small
molecule metabolites, such as triacylgycerols. The
interconnectivity of metabolic pathways, with
many metabolites feeding into multiple reactions,
can make the optimization process counter-intu-
itive; a greater knowledge of metabolic network
properties and mathematical modeling of these
networks are needed to optimize bioproduction
processes [14]. The production of some small mol-
ecule therapeutics may also take advantage of
mathematical modeling of metabolic networks in
the future. For example, metabolic modeling has
been applied to investigate ways to increase peni-
cillin production [15], and metabolic models will
likely play a role in optimizing strains for the pro-
duction of new antibiotics [16]. Notably, C. rein-
hardtii is being developed for the production of
therapeutic proteins [17].

Mathematical modeling of metabolism can elu-
cidate metabolic network properties and facili-
tates optimization. At the simplest level, metabol-
ic modeling can supplement high-throughput
data generation technologies, such as transcrip-
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Table 3. Examples where genome-scale mathematical models have demonstrated the potential to optimize the microbial production of commercially

important compounds. A compendium of genome-scale metabolic models can be found elsewhere [80]

Microorganism Metabolite Application Reference(s)
Saccharomyces cerevisiae Ethanol Biofuel [18]
Clostridium thermocellum Ethanol Biofuel [54]
Lactococcus lactis Diacetyl Food (dairy flavor) [87]
Pseudomonas putida Polyhydroxyalkonoates Plastics [82, 83]
Corynebacterium glutamicum L-Lysine Food and animal feed (essential amino acid) [84]
Clostridium acetobutylicum Butanol Biofuel [85]
Escherichia coli L-Threonine Food, animal feed, pharmaceutical and cosmetic [86]
Escherichia coli Lycopene Nutraceutical [50]
Escherichia coli Succinic acid Polymers and many others [87]
Mannheimia succiniciproducens Succinic acid Polymers and many others [88-91]

tional profiling, to develop a meaningful visual
representation of network function [14]. Further-
more, optimizing individual pathways can impact
the utilization of global cofactors, such as NADH,
NADPH, and ATP [18]. The utilization of pooled
resources by different pathways is one reason a
genome-scale mathematical model can be neces-
sary to interpret phenotypic changes in metaboli-
cally engineered organisms [14]. Additionally,
mathematical optimization focuses development
efforts on the engineering strategies most likely to
yield improvements in yield, titer, productivity,
and robustness [19]. The required resources and
time to commercialization can be greatly reduced
compared to purely experimental development
methods [19].

3 Selection of microalgae for biofuels
production

In general, two approaches might be utilized to de-
velop a metabolically engineered organism. Novel
strains with perhaps less well-defined metabo-
lisms but with unique, advantageous characteris-
tics (e.g., ability to process a particular substrate)
may be utilized and subjected to targeted genetic
modification as needed [11]. Alternatively, a model
organism with relatively well-defined metabolic
machinery already in place could be utilized.

The advantage to utilizing microalgae strains
that already produce a desired metabolite is that it
may be possible to find wild-type strains that give
good yields. The search for such microorganisms is
called bioprospecting [11]. The disadvantage is that
molecular techniques may not exist for efficiently
introducing and obtaining expression of genes in
novel microorganisms [11]. For example, difficul-

© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

ties encountered trying to engineer Clostridium
acetobutylicum to increase butanol production have
led some researchers to develop new butanol pro-
duction microbes in place of C. acetobutylicum [20,
21]. Notably, aside from Chlamydomonas rein-
hardtii, methods for the genetic manipulation of al-
gal species are not well established [5].

The ideal selection for de novo metabolic design
would be a laboratory model organism, such as Es-
cherichia coli, S. cerevisiae, or C. reinhardtii due to
the availability of laboratory techniques for genet-
ic manipulation, a sequenced genome, and avail-
ability of genome-scale metabolic models. Two ad-
vantages of utilizing model organisms are that the
tools for genetic manipulation are present and
mathematical descriptions of the metabolic path-
ways may already exist [11]. A potential disadvan-
tage of utilizing model organisms is that introduc-
ing entire metabolic pathways may present a sub-
stantial challenge in itself.

A more extreme case of truly de novo metabol-
ic design would be to build an organism from
scratch for the optimal production of the metabo-
lite of interest [22]. Indeed, recent advances in
synthetic biology techniques include the construc-
tion of full Mycoplasma genomes and their intro-
duction into an organism [23, 24]. A fully synthetic
approach would facilitate the design of microbial
factories that would use a minimal mixture of in-
expensive feedstock for growth and the optimized
conversion to the desired metabolite [25]. Howev-
er, although synthetic approaches have been suc-
cessfully utilized to add pathways and gene net-
works to organisms [26], these approaches have
not yet been utilized to make a minimal, fully en-
gineered microbe capable of producing com-
pounds of economic value. There are also addi-
tional fundamental challenges to constructing a vi-
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Figure 1. The process of developing a metabolic model.

able synthetic organism as a commercial produc-
tion platform, such as making the associated regu-
latory networks sufficiently robust to environment
perturbations, mutations, and noise in gene ex-
pression [27, 28].

Each approach has advantages, and all hold po-
tential for microalgal biofuels production. There is
substantial interest in both algal bioprospecting
and developing laboratory algae such as C. rein-
hardtii. Metabolic systems analysis can play an im-
portant role in both approaches.

4 Developing systems biology of algae
through metabolic network modeling

Systems biology provides the means to under-
stand the emergent properties of biological sys-
tems and predict systems behavior under differ-
ent physiological conditions. Metabolic network
modeling, as a systems approach, integrates dif-
ferent large-scale datasets, genomic information,
and mathematical equations, to model and predict
the metabolic fluxes of an organism. As described
in more detail below, network reconstruction is an
iterative process that starts with building a draft
metabolic network using the available literature
and genomic evidence, the incorporation of reac-
tion stoichiometry, gene-reaction association, and
cellular localization of reactions. The next step is
the conversion of the reconstructed network into
a computable format. The final step is the evalua-
tion and refinement of the network model through
comparison with experimental data [29]. The iter-
ation of these steps can improve the accuracy of
the model.

4.1 Metabolic network reconstruction and analysis

The workflow for the development and refinement
of a metabolic network model is illustrated in Fig. 1.
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Sequenced genomes serve as a starting point for
the reconstruction. In addition to the C. reinhardtii
genome [30], complete genome assemblies for sev-
eral algae-related species are available (e.g., Acary-
ochloris marina [31], Anabaena sp., Cyanidioshyzon
merolae [32, 33], Ostreococcus tauri [34], and Syne-
chococcus sp. [35-37]). As additional high-quality
metabolic network reconstructions emerge, metab-
olism in multiple algal species can be compared in
silico. Their reconciliation may serve as an addi-
tional validation of their reconstruction and en-
hance understanding of microbial specialization.
Comparisons will facilitate selecting an optimal
species as a starting point for biofuel production.
Furthermore, analysis of several metabolic net-
works may help to identify ideal species for modi-
fication based on the best production potential
rather than optimal production in the starting
strain [38].

After sequencing, the genome is structurally an-
notated to define genes and transcribed elements.
Once open reading frames (ORFs) are delineated,
molecular function can be assigned through com-
parison with genes associated with proteins of
known functions. Functional assignments can be
made through profile-based domain assignments
[39] or, as a first draft, by predicting protein func-
tion based on sequence similarity with proteins of
previously annotated function in a database such
as Uniprot (http://www.uniprot.org/). The automat-
ed annotation pipeline results in a genome anno-
tated with Enzyme Commission (EC) numbers
which designate the putative catalytic function of
the gene product [40]. The reliability of this process
is improved by the availability of accurate annota-
tion data for related organisms.

With an annotated genome in hand, a recon-
struction can be generated in a structured format
such as a stoichiometric matrix. The stoichiometric
matrix accounts for compounds (as rows) and cor-
responding chemical transformations (as columns)
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in which the elements of the matrix correspond to
the stoichiometric coefficients. While the stoi-
chiometry of metabolic reactions is fixed, the anno-
tated genome enables the identification of which
reactions are to be included in a given network. Re-
actions are assigned to the annotated genes using a
metabolic database such as the Kyoto Encyclopedia
of Genes and Genomes (KEGG). Reaction proper-
ties such as reversibility or localization to specific
cellular compartments are also built into the net-
work model [41]. The resulting reaction network
may contain incomplete pathways or lack metabol-
ic functions for which there is empirical evidence.
In such cases, the network is curated to make it
consistent with the known physiological and bio-
chemical characteristics of the organism [42]. The
model is then converted to a computable format to
allow for quantitative analysis [43]. SBML formats
facilitate the exchange of models between research
groups and compatibility with software tools
(http://sbml.org).

It is likely that the model will lack reactions that
are present in the organism, as many gene func-
tions are undetermined. It is also possible the mod-
el may include reactions which are not present
[43]. Developing a metabolic network model is an
iterative process in which the model is refined as
hypotheses based on simulations are tested against
experimental results [44]. Metabolomic and tran-
scriptomic data from high-throughput experi-
ments can be used to evaluate and refine the mod-
el, iteratively improving its capacity to predict phe-
notypes.

With a mathematically defined model, analysis
can be performed to optimize or characterize the
network. Because metabolic reactions occur on a
fast time scale relative to other cellular processes,
a reasonable assumption that enables the applica-
tion of several analytical approaches is that the
metabolic network operates at steady state. The
steady-state assumption is inherent to flux balance
analysis (FBA), a widely used metabolic modeling
strategy. To analyze the network, constraints are
placed on reaction fluxes, such as on the exchange
reactions responsible for taking in nutrients, and
the network is optimized with respect to a goal, fre-
quently taken to be the growth of the organism
(biomass production). The maximization of the ob-
jective function subject to constraints makes the
linear programming problem a cornerstone of
metabolic FBA. However, metabolic systems mod-
els are most frequently underdetermined: there are
more reactions than metabolites, and there are
frequently many solutions that give the same
maximum objective. Software tools to perform
constraint-based analysis on stoichiometric meta-

© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.biotechnology-journal.com

bolic models are freely available (for example, the
COBRA toolbox [45]). Genome-scale constraint-
based models and FBA have been reviewed in more
depth elsewhere [13, 46].

The constraint-based analysis approach can be
applied to predict flux through metabolic path-
ways, optimal growth media, product yields, and
other factors relevant to bioprocess design and op-
timization. In the context of metabolic engineering,
gene knockouts are simulated by removing the cor-
responding reactions from the model. While the
wild-type system is typically assumed to be opti-
mized for biomass production, techniques have
been developed to explore knockout combinations
and gene additions that will maximize the produc-
tion of a target metabolite by coupling it to cell
growth [47, 48]. Interestingly, knockout phenotypes
may no longer have the same biological objectives
as their wild-type parents. It has been noted that
the metabolic networks of mutants behave subop-
timally with respect to growth, and instead more
closely resemble the unperturbed network [49].
Thus, mutant phenotypes may be modeled more
accurately through Minimization of Metabolic Ad-
justment (MOMA) rather than optimization of bio-
mass production [49, 50]. These analytical tools
may be useful for metabolic engineering strategies.

5 Case studies

As described, the process of metabolic network re-
construction naturally lends itself to an iterative
approach. Subsequent rounds of model refinement
facilitate the testing of hypotheses in vivo. The
metabolic network model becomes a tool not just
for finding the optimal solution to industrially rel-
evant metabolic engineering challenges, but an in-
tegral part of conducting genome-scale research
into the fundamental operating principels and
mechanisms of organisms. To truly exploit the pow-
er of the metabolic network modeling approach, in
silico research can be directly coupled to experi-
mental verification, improving knowledge of the
network components, annotation of the genome,
and confidence in model predictions. We discuss
three such examples where metabolic modeling
has demonstrated encouraging results in the de-
velopment of engineered microbial strains. A more
extensive listing of model-driven metabolic engi-
neering is shown in Table 3. While the application
of these metabolic network analyses to algal sys-
tems is relatively limited to date, these examples
provide an overview of the status of the field and
some of the opportunities available.
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5.1 Metabolic network reconstruction of C.
reinhardtii with transcript verification

Manichaikul et al. [51] have described an iterative
methodology for building a high-confidence, ex-
perimentally verified model of central metabolism
and have applied the method to an updated C. rein-
hardtii genome sequence. Interestingly, the first
round of automated functional annotation found
six new enzymatic reactions involved in the pro-
duction of triacylglycerols that were not present in
the previous annotated genome, an enhancement
potentially very relevant for future studies into
biodiesel production. The reconstructed metabolic
network model was initially focused on central me-
tabolism. The network structure and reaction stoi-
chiometry were identified by coupling the auto-
mated functional annotation with a manual review
of the literature, KEGG, and the Expert Protein
Analysis System proteomics server (ExPASy). Pos-
tulated transcripts encoding the enzymes mediat-
ing the network reactions were verified in vivo uti-
lizing RT-PCR and rapid amplification of cDNA
ends (RACE). The experimental verification im-
proved the original structural annotation of the se-
quence, refining 5% of the ORFs. An additional
round of expansion and verification was then ap-
plied to the network. Interestingly, two of the tran-
scripts could not be verified experimentally, and lit-
erature evidence showed that one of the unverified
transcripts is regulated by light in a genus of
cyanobacteria. It is, therefore, likely the approach
can be applied to account for the differential regu-
lation of transcript expression, and thus network
structure, based on growth conditions. Boyle and
Morgan [52] also constructed a model of C. rein-
hardtii central metabolism and also demonstrated
the utility of such network models for refining
genome annotation and predicting phenotypes of
the alga under defined environments. These net-
work reconstructions can serve as a platform and
starting point for more detailed metabolic engi-
neering programs (as described below).

5.2 Optimization of ethanol production in
C. thermocellum

Recently, a genome-scale metabolic model of C.
thermocellum was constructed to investigate the
production of ethanol from the alkaline cellulose
degradation product, cellobiose [53]. The model
identified several important knowledge gaps relat-
ed to central metabolism. None of the existing
genome annotations contained a gene for pyruvate
kinase, and BLASTP identified several candidate
genes that could encode the enzyme. The analysis
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also identified a gap in the citric acid cycle. The
genome does not appear to encode for succinate de-
hydrogenase and enzymatic activity could not be
detected. However, small amounts of succinate were
detected in C. thermocellum culture, so it is likely
there is an alternate pathway utilizing the metabo-
lite [53, 54]. It will be important to determine the
metabolic fate of succinate in future experiments
and refine the model for improved predictions.

Strategies for increasing ethanol production
through genetic modifications and altering the
feedstock were identified. Metabolic reactions can
exhibit a range of theoretical flux values while
meeting the biological objective, and, notably,
Roberts et al. [53] found this to be the case for
ethanol production. Alternative solutions that re-
sult in the same optimal objective were sought in
flux wvariability analysis (FVA). FVA predicted
strains missing ferroredoxin hydrogenase and
growth in media supplemented with lactate and
malate results in a maximal 35-fold increase in the
maximum theoretical ethanol yield, to about
140 mmol/gDW/h.

5.3 Optimization of lycopene production in E. coli

Alper et al. [50] investigated gene knockout meth-
ods to further optimize an industrial E. coli strain
for the production of lycopene. A significant diffi-
culty for in silico metabolic knockout design is that
exhaustive search strategies are combinatorially
complex and, therefore, not practical for designs
exploiting multiple knockouts. Sequential strate-
gies are not theoretically guaranteed to find the
global optimum in the gene knockout space, espe-
cially if synergistic interactions are critical to the
optimal solution. However, their sequential search
method, as validated by an exhaustive pairwise
search, performed excellently in identifying the
best knockout combinations. Overall, in vivo verifi-
cation of changes in microbial growth and ethanol
production agreed well with predictions. However,
the accuracy of the in silico prediction was compro-
mised when the knockout resulted in the accumu-
lation of 3-phosphoglycerate, a metabolite with
known regulatory functions. The genome-scale sto-
ichiometric model utilized did not incorporate reg-
ulatory effects, which may explain the discrepancy.
Utilizing the sequential search strategy, a triple
knockout mutant along the optimal in silico path
was verified in vivo to produce 37% more lycopene
than the parent industrial strain.
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6 Ready for application: Algal metabolic
systems analysis

To date, efforts aimed at genome-scale metabolic
modeling have been primarily directed at bacterial
networks. Model bacteria, such as E. coli, are the
among the best characterized organisms, simplify-
ing the substantial task of building a high-quality,
curated model [55]. The small genomes of bacteria
such as E. coli and H. pylori have also facilitated the
expansion of the scope of the metabolic models to
the genome scale [55], which have been iteratively
tested and refined [55-57]. Additionally, industries
of commercial scale, where modeling and optimiza-
tion approaches have demonstrated value for oth-
er products, have a critical interest in also optimiz-
ing the production processes for products derived
from microbes [19]. Notably, models of a much
more ambitious scale have recently been con-
structed, such as multicompartmental genome-
scale models of human metabolism [58] and the
plant Arabidopsis thaliana [59].

These advances are being employed in the field
of algal biotechnology, and arguably the field of al-
gal systems biotechnology is still in an early stage
of development. The sequencing of C. reinhardtii’s
nuclear [30, 60], mitochondrial [61, 62], and chloro-
plast genomes [63] has enabled the few published
large-scale computational models of algal metabo-
lism. Three computational models of C. reinhardtii
metabolism have been published. The first con-
straint-based model featured 484 reactions and 458
metabolites located in the cytosol and mitochon-
dria [52]. Shortly thereafter, an independent model
was published with 259 reactions and 267 metabo-
lites localized to the cytosol, mitochondria, chloro-
plast, glyoxysome, and flagellum [51]. Additionally,
a relatively large kinetic model of algal metabolism
has been constructed that includes 95 reactions
with 38 metabolites localized to the cytosol and mi-
tochondria [64].

Construction and validation of accurate algal
models is certainly more challenging than prokary-
otic organisms given the multiple organelles and
genomes. However, there is some guidance avail-
able from efforts with another complex, photosyn-
thetic organism, A. thaliana, and C. reinhardtii
should be an easier organism to work with [65].
One of the fundamental difficulties with complex
multicompartmental models is determining the
compartments to which specific metabolic reac-
tions are localized, as duplication of portions of bio-
chemical pathways occurs. A recent study employ-
ing three pentose phosphate model alternatives in
A. thaliana was not able to distinguish between the
possibilities using steady-state isotope labeling
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data [66]. This result emphasizes the need for addi-
tional biochemical evidence to develop accurate
metabolic models, especially if a metabolic design
situation requires manipulating compartment-
specific reaction fluxes. However, it is worth noting
that networks as large as that of the human [67]
and A. thaliana [68] have been modeled with less
accounting for compartmentalization. It is accept-
ed that model construction is an iterative process
[69], and the algae field is well-situated to begin ap-
plying and refining these models to guide experi-
mental methods to produce products of commercial
value from C. reinhardtii.

7 Summary and conclusions

Systems-based metabolic engineering holds prom-
ise for algal bioprocess design. Genome-scale mod-
els will generate testable hypotheses that may in-
crease understanding of algal metabolism and lead
to non-intuitive optimization strategies that tradi-
tional methods are unlikely to produce. The adop-
tion of systems-based approaches to metabolic en-
gineering of algae may be a critical step towards
making algae-derived biofuels economically com-
petitive. Several sequencing projects are underway;,
and the subsequent development of in silico mod-
els will cooperatively reinforce the utility of sys-
tems analysis for the algal biotechnology industry.
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Abstract

Background: Recent advances in the field of metabolic engineering have been expedited by the availability of
genome sequences and metabolic modelling approaches. The complete sequencing of the C. reinhardtii genome
has made this unicellular alga a good candidate for metabolic engineering studies; however, the annotation of the
relevant genes has not been validated and the much-needed metabolic ORFeome is currently unavailable. We
describe our efforts on the functional annotation of the ORF models released by the Joint Genome Institute (JGI),
prediction of their subcellular localizations, and experimental verification of their structural annotation at the
genome scale.

Results: We assigned enzymatic functions to the translated JGI ORF models of C. reinhardtii by reciprocal BLAST
searches of the putative proteome against the UniProt and AraCyc enzyme databases. The best match for each
translated ORF was identified and the EC numbers were transferred onto the ORF models. Enzymatic functional
assignment was extended to the paralogs of the ORFs by clustering ORFs using BLASTCLUST.

In total, we assigned 911 enzymatic functions, including 886 EC numbers, to 1,427 transcripts. We further
annotated the enzymatic ORFs by prediction of their subcellular localization. The majority of the ORFs are
predicted to be compartmentalized in the cytosol and chloroplast. We verified the structure of the metabolism-
related ORF models by reverse transcription-PCR of the functionally annotated ORFs. Following amplification and
cloning, we carried out 454FLX and Sanger sequencing of the ORFs. Based on alignment of the 454FLX reads to
the ORF predicted sequences, we obtained more than 90% coverage for more than 80% of the ORFs. In total,
1,087 ORF models were verified by 454 and Sanger sequencing methods. We obtained expression evidence for
98% of the metabolic ORFs in the algal cells grown under constant light in the presence of acetate.

Conclusions: We functionally annotated approximately 1,400 JGI predicted metabolic ORFs that can facilitate the
reconstruction and refinement of a genome-scale metabolic network. The unveiling of the metabolic potential of
this organism, along with structural verification of the relevant ORFs, facilitates the selection of metabolic
engineering targets with applications in bioenergy and biopharmaceuticals. The ORF clones are a resource for
downstream studies.
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Background

Recent advances in sequencing genomes of prokaryotes
and eukaryotes [1] and the explosion of the develop-
ment and use of genome-scale metabolic network
reconstructions [2] are expected to facilitate the selec-
tion of targets for metabolic engineering [3,4]] . The
unicellular green alga Chlamydomonas reinhardtii has
been an attractive organism for exploration of metabolic
engineering hypotheses due to its capability to flexibly
regulate alternative biochemical pathways to produce
biofuels [6-9]. However, the optimal selection of the
enzymatic targets has been so far hindered by the lack
of a comprehensive knowledge of the encoded genes
that carry out the metabolic activities of the organism.
Although the released genome sequence of C. renihard-
tii by the Joint Genome Institute (JGI) [10] provided the
needed resource to predict nearly 17,000 genes in this
organism, it alone does not reveal the underlying princi-
ples of metabolic network function, nor does it disclose
the functions of the predicted “parts-list” of the organ-
ism. To define genes and map their products to func-
tion, computational algorithms have been extensively
applied to annotate the accumulated genomic data from
many organisms including C. reinhartii[11,12]. Most of
these approaches are unable to predict the transcript
structures precisely and accurately in a uniform manner
due to 1) the incompleteness of the EST data, 2) the
lack of comparative genomic information, particularly in
less widely studied species, and 3) the complexity of the
rules governing transcription initiation, termination and
splicing events. Even for the well-studied nematode C.
elegans, for which a high quality genome sequence has
been available for over 10 years, inconsistencies still
remain in defining the ORF structures [13,14]]. Previous
large-scale studies on C. reinhardtii, have included
microarray [15,16]], proteomics [17], and, more recently,
RNAseq experiments [18] which have provided valuable
expression data based on earlier releases of JGI annota-
tions. Currently, the JGI v4.0 predicted C. reinhardtii
ORFeome remains for the most part unverified; there-
fore, the functional annotation and experimental struc-
tural verification of the encoded ORFs are urgently
needed prior to use in functional studies including
metabolic engineering experiments.

We previously reported the functional annotation of
the gene products involved in central metabolism of C.
reinhardtii using JGI v3.0 gene models [19] in which we
improved the existing functional and structural annota-
tions of the ORF models. In the re-evaluation of the
central metabolic ORFs, for which the ORFs are gener-
ally the best characterized in the proteome, we observed
that as much as 10% of the ORFs were annotated with
structuralerrors. The errors included incorrect 5" or 3’
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boundary annotations, which we identified through
RACE [19].

In this study, we computationally assigned enzyme
functions to the predicted and newly released JGI v4.0
protein-coding ORF models and targeted the enzymatic
ORFeome for structural verification. Our results, in
addition to structural verification, provide expression
evidence for the enzymatic gene products, predict their
subcellular localization, and identify the ORF models
that may need to be re-annotated.

Results and discussion

Functional annotation of JGI v4.0 transcripts

We used the new JGI “filtered transcript models”
released through the JGI portal (http://genome.jgi-psf.
org/Chlre4/Chlre4.home.html) for both functional
assignments and structural annotation verifications.
Enzymatic functional assignments to the C. reinhardtii
ORFs were made by associating Enzyme Commission
(EC) numbers through reciprocal BLAST searches
against the UniProt enzyme database [20] (http://www.
uniprot.org/, with over 100,000 protein entries) (Figure
1A) supplemented with AraCyc database entries [21] .
The best match for each translated ORF was identified
(with an e-value threshold of 10®) and the EC number
from the UniProt best match (or enzyme annotation
from AraCyc) was transferred on to the JGI predicted
OREF. We extended the EC assignments to the respective
paralogs of the ORFs by clustering ORFs for the JGI fil-
tered models. Altogether, we were able to assign 886 EC
numbers to 1,427 JGI ORFs (Figure 1B, Additional file
1). KEGG currently provides 603 enzymatic annotations
for the JGI v4.0 transcripts, of which there are 441
shared with our annotation. Theassignments given in
this study provide an additional 445 EC numbers not
present in KEGG. The list of the enzymatic JGI v4.0
gene models with their assigned EC numbers are pro-
vided in Additional file 1.

In order to provide additional functional information,
WoLF PSORT [22] was implemented to assign subcellu-
lar localizations to each translated JGI v4.0 enzymatic
ORE. WoLF PSORT is a high-performance localization
prediction algorithm evolved from PSORT [23] , PSORT
II [24] and iPSORT [25]; it combines localization fea-
tures from these algorithms together with amino acid
composition in a weighted k-nearest neighbors frame-
work. Based on the cross-validation results, WoLF
PSORT makes reliable predictions for nucleus, mito-
chondria, cytosol, plasma membrane, extracellular and
(in plants) chloroplast. For other subcellular compart-
ments, the performance is not as good, but still informa-
tive [22] . Compared to other methods, WoLF PSORT
has been shown to have good performance for most
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J |

BLASTCLUST, Seq. identity cut-off: 35%

KEGG annotation This study

UniProt Enzymes
(>100,000 protein sequences)

Clusters of paralogous groups

162 441 445

l

| Reciprocal best-hits ‘

Integration of reciprocal blasts
with paraloggroups

EC and enzymatic assignments to
JGI Proteomes

Figure 1 Functional annotation of C. reinhardtii JGI v4.0 translated ORFs. Enzymatic functions were assigned to the JGI v4.0 translated ORFs
by comparing the sequences with the UniProt and AraCyc enzyme databases. The computational pipeline (A) entailed transfer of enzyme
annotation to JGI ORFs identified through reciprocal BLAST, then establishing paralog groups to extend enzyme annotation to paralogs. Our
functional annotation identified 886 EC numbers, of which only ~50% are currently annotated by KEGG (B).

subcellular localizations [26]. Importantly, predictions
are not made on the basis of signal sequences that can
introduce vulnerability to errors in sequence and/or
annotations on the 5" end of the gene [27]. Furthermore,
due to the unique phylogenetic position of C. reinhardtii
and a lack of extensive GO annotation, alternative meth-
ods such as MultiLoc2 [28], which use GO annotation
for refinement of predictions, would not be applicable
here.

The results (Additional file 2) are presented as the
number of nearest neighbors in different subcellular
compartments for each protein. The default value for
the total number of nearest neighbors (i.e., k) is 32.
Even though C. reinhardtii is in the plant lineage, it has
retained key animal genes [10] and is a unicellular
organism that shares ancestry at the branching point of
plants and animals. We therefore performed two WoLF
PSORT runs in which C. reinhardtii was considered
either as a plant or animal. Because C. reinhardtii is clo-
ser to plants than animals [10], predictions made when
considering it as a plant are likely to be more accurate.
However, because WoLF PSORT uses homology to
known proteins, and some C. reinhardtii proteins may
be closer to those in animals than plants [10], the pre-
dictions assuming an animal lineage provide alternative
assignments, particularly for cases where ambiguous
predictions are made for the proteins assuming plant
origins. To summarize the obtained results (Fig. 2), we
have binned the encoded proteins based on the assigned
probability values for each protein, such that, if more
than 50% of the nearest neighbors of the protein belong
to a given compartment, that protein is assigned to a

single compartment as its primary localization site. In
cases where different localization predictions made
based on animal and plant assumptions both meet an
85% cutoff, we took the higher confidence prediction as
the final localization assignment (Additional file 3).
Using this integration scheme, the largest compartment
is the chloroplast when C. reinhardtii is considered a
plant, and the second largest is the mitochondrion (Fig.
2C). These localization predictions agree with the fact
that these genes are all related to metabolism. To verify
the performance of our predictions, we manually
curated a number of experimentally derived C. reinhard-
tii subcellular protein localizations recently reported by
Weinkoop et al.[29]. Due to the limited number of loca-
lizations that could be transferred to v4.0 annotations
from this study, we were only able to evaluate 9 ORFs
in our set. Our predicted localizations of all 9 ORFs
agreed with the experimentally determined localizations.
Although the number is too small for adequate statisti-
cal analysis, it still shows the high quality of the
predictions.

Experimental verification of C. reinhardtii enzymatic
ORFeome

Our EC annotation of the JGI v4.0 transcript models
identified 1,427 predicted transcripts with putative enzy-
matic functions. To experimentally verify structural
annotation of the enzymatic ORFs, we carried out tar-
geted transcriptome sequencing experiments after we
amplified the ORFs by reverse transcription-PCR (RT-
PCR) (Figure 3A). The generated amplicons were
sequenced using the 454FLX platform before and after
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Figure 2 Subcellular localization prediction of JGI v4.0 enzymes. Following enzyme classification assignments to JGI v4.0 translated ORFs,
subcellular localization of the proteins were predicted by WolLF PSORT [22] as plant (A) or animal (B) proteins. Based on the obtained probability
values, each protein was assigned a compartment when 50% or higher percentage of the nearest neighbors for the protein belonged to a given
compartment. When the 50% threshold is not reached, the protein, or its encoding ORF are assigned to “other” category to designate multiple
compartments or ambiguous predictions. In (C), the predictions made as animal and plant were consolidated into a single set by increasing the
threshold to 85%, then reporting the predicted assignment with the higher value. Abbreviations are: Chlo: chloroplast, Cyto: cytosol, Cysk:
cytoskeleton, ER.: endoplasmic reticulum, Extr: extracellular, Mito: mitochondrion, Nuc: nucleus, Pero: peroxisome, Plas: plasma membrane, Vacu:
vacuolar membrane.

cloning of the amplicons into a Gateway vector. The  providing light, organic carbon sources and other nutri-
sequences of the clones were further verified by conven-  ents (Methods). Total RNA from cells undergoing expo-
tional Sanger sequencing. nential growth was isolated and reverse transcribed to

In order to perform the verification experiments, we serve as a template for amplification of the ORFs for
grew C. reinhardtii under permissive condition by which we designed Gateway-tailed primers. Following
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Figure 3 ORF verification by RT-PCR followed by multiplex sequencing. RNA isolated from C. reinhardtii grown under a permissive
condition (continuous illumination and acetate as a source of carbon) was reverse transcribed, then used as template for PCR in which ORF-
specific primers were used to amplify the JGI annotated ORFs. The amplicons were then sequenced directly using the 454FLX platform, or
cloned, then sequenced by 454. (A) Amplification of representative metabolic ORFs are shown after electrophoresis (192 amplicons analyzed in
two 96 well E-gels). (B) Percent coverage of 1,427 enzymatic ORF reference sequences by the obtained reads from 454 sequencing. The 454
reads were aligned to the JGI ORF reference sequences and percent coverage of the length of each reference sequence was determined (100%
denotes all bases of the reference sequences could be covered by one or more 454 read). The entire lengths of 699 ORFs were 100% verified.
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amplification, we carried out next generation sequencing
(using the 454FLX platform) of the amplicons. The
obtained 454 reads were then aligned to the JGI v4.0
OREF reference sequences to assess annotation accuracy.
The aligned ORFs were binned according to their per-
cent coverage; i.e., based on the percentage of the entire
length of the ORF reference sequence that could be cov-
ered by the contigs assembled from the 454 reads.

For 78% of the JGI v4.0 ORF reference sequences, the
454 reads provided 95-100% coverage (Fig. 3B; Addi-
tional file 1), of this set approximately 92% had a cover-
age rate of 99-100%, demonstrating high verification
rates. Approximately 10% of the ORF models showed
coverage of 50-95%. The remaining 12% were covered
less than 50% and of this set, 7% of the ORF models
had less than 20% of their length verified by 454-reads.

As an alternative method of verifying the ORFs, we
end-sequenced the cloned PCR products by conven-
tional high-throughput Sanger sequencing. From 1,427
JGI v4.0 ORFs tested, we were able to obtain 661 ORF
sequence tags (OSTs) that were aligned to the 5" end of
the ORF models, and 631 OSTs that could be aligned to
the 3’ ends. Altogether, 42% (602) ORFs had OSTs that
verified both ends of the ORF models. We could assem-
ble full-length contigs for 242 ORFs (Additional file 1).

Overall, we obtained expression evidence for 1,401 of
1,427 ORF models with assigned enzymatic functions
based on targeted transcriptome sequencing results and
sequencing of the clones, though clearly not all of these
ORF models can be considered verified. We consider an
ORF model to be verified if 98 to 100% of its reference
sequence could be covered by 454-reads, or if a full-
length contig generated from Sanger sequencing of an
obtained clone completely matched the reference
sequence. For 73% of the ORF models, the 454-reads
give confirmation at the 98-100% level. Sanger sequen-
cing of the clones could verify an additional 36 ORF
models (for which we could assemble contigs using 3’
and 5’ end reads). These models can therefore be con-
sidered verified, though it should be noted that even
100% coverage of an ORF model does not exclude the
possibility of the presence of exons that were not anno-
tated. The high coverage rates do, however, guarantee
that the annotated exons are expressed. Furthermore,
incomplete coverage by 454-reads does not necessarily
imply inaccurate annotation; in some cases, less than
100% coverage could be the result of low expression
level of the transcript and consequently low sequencing
depth. We note that due to the amplification of the
transcripts, the targeted transcriptome method that we
have used is expected to normalize the abundance of
the amplicons to a degree.

While end verification by Sanger sequencing can con-
fidently verify the 5’ and 3’ ends, this method provides
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no information on the internal exon structure of long
ORFs (unless internal primer walking [30] is carried
out). We also find that the overall success rate of
sequencing clones using the Sanger method is signifi-
cantly lower than the 454 sequencing of amplicons.
Cloning bottlenecks, failure to generate contigs due to
end reads not covering the internal segments, and ran-
dom sequencing failures could be among the contribut-
ing factors. Direct sequencing of amplicons through 454
or other parallel sequencing methods clearly bypasses
these limitations.

Conclusions

A central challenge in the post-genomic era is the map-
ping of the genotype-phenotype relationship. For bio-
chemical networks, the functional connections between
genotype and phenotype are deciphered through the use
of the available high-throughput experimental and com-
putational platforms. Each technology can be used to
generate a vast amount of data particular to some
aspects of a given biochemical network. Ultimately the
gathered data could be used to manipulate the biochem-
ical systems for biotechnological and medical purposes.
However, such efforts rest upon the availability of accu-
rate structural and functional annotations, as well as the
availability of the biological resources, such as ORF
clones. In this study, we have carried out both computa-
tional functional annotation and direct experimental
verification of structural annotations of JGI v4.0 enzy-
matic ORFs, which include both metabolic and non-
metabolic enzymes. We carried out targeted amplifica-
tion of the ORFs by RT-PCR and sequenced the pro-
ducts (before and after the cloning) to verify the ORF
structures. The approach of using targeted amplification
of ORFs offers several advantages over other high-
throughput approaches that are not targeted; impor-
tantly, it establishes the cis-connectivity between the 5’
and 3’ ends of the ORF. Such cis-connectivity cannot be
established from whole transcriptome sequencing, tiling
array analysis or other high-throughput transcriptome
survey methodologies (e.g., [18,31-34]). In addition, the
generated amplicons can be cloned, as we have done so
here, to provide reagents for downstream large- or
small-scale experiments, which can be used to define
genotype to phenotype maps as well as accomplishing
bio-engineering tasks. With an ever-increasing number
of organisms whose genome sequences are becoming
available (e.g., the diatom Phaeodactylum tricornutum
[35], the algae Ostreococcus Sp. [36] and Volvox carteri
[37]), the need for structural and functional annotation
and their verification is clear. The approach and experi-
ments carried out in this study can be readily extended
to other species to facilitate functional annotation and
structural verification of their gene models.
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Methods

Enzyme annotation of JGI v4 Proteome

We assigned Enzyme classification (EC) to the trans-
lated JGI v4.0 filtered ORF models (Chlre4_best_tran-
scripts and Chlre4_best_proteins) using UniProt [20]
and AraCyc [21] enzyme protein sequences and their
EC annotations as the basis. The transfer of enzyme
annotations to ORF models involved two main steps:
(1) Carrying out and deciphering reciprocal best-hits, if
any, for each of the translated JGI ORF models to the
UniProt and AraCyc sequences, then transferring the
EC from the best-hits UniProt/AraCyc sequences to
the corresponding ORF models. This transfer was done
using BLASTP with an e-value threshold 0.001
[38,39]]; (2) Identification of paralogs, in the entire col-
lection of translated JGI models, of already EC
assigned translated ORF models and then transferring
their EC annotations to their paralogs as well. This
transfer was done using BLASTCLUST (http://www.
ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/Ixr/source/doc/
blast/blastclust.html) with a sequence identity cut-off
of 35% and length cut-off of 70%. BLASTCLUST can
cluster protein sequences (using BLAST) systematically
through pair wise alignments when statistically signifi-
cant matches are found. Importantly, BLASTCLUST
uses “single-linkage” clustering, which allows linkage of
clusters through their “best matching” components.
This aspect of the algorithm allows for clustering of
sequences, which otherwise may lie below a set simi-
larity threshold among themselves, but are linked
through a sequence that has an above threshold
similarity.

Subcellular localization predictions

WoLF PSORT [22] was used to assign subcellular loca-
lizations to each translated JGI v4.0 enzymatic ORFs.
The output for each ORF provides the number of
nearest neighbors in different subcellular compart-
ments for each protein. The default value for total
number of nearest neighbors (i.e., k) is 32. For each
protein, the result can be transformed into a probabil-
ity model:

N(c;)

m

D Ne)
i=1

where ¢; is the ith subcellular compartment; N(c;) is
the number of nearest neighbors the protein has for the
ith subcellular compartment, and m is the total number
of subcellular compartments predicted for the protein.
We carried out the localization assignments of C. rein-
hardtii ORFs considering it as a plant and animal.

P(c;) =
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C. reinhardtii strain and growth condition

C. reinhardtii strain CC-503 was used for our experi-
ments. C. reinhardtii cells were grown in Tris-acetate-
phosphate (TAP) medium containing 100 mg 1"* carba-
micillin without agitation, at room temperature (22-25 °
C) and under continuous illumination with cool white
light at a photosynthetic photon flux of 60 pmol m™ s,

RNA isolation and quality assessment

Total RNA was isolated from C. reinhardtii cells grown
in TAP medium and under constant light. Cells from
mid-log phase were collected by centrifugation at 2,000
rpm (650g) for 10 min. Total RNA was isolated using
TRIzol reagent (Invitrogen). The quality of the isolated
RNA was improved by digesting the remainder of the
cellular DNA using 0.08 U pl"' RNase-free DNase I
enzyme (Ambion). The integrity and quality of the total
RNA was assessed by Agilent 2100 Bioanalyzer (Agilent)
using RNA pico 6000 kit and by following the manufac-
turer’s instruction. The fraction of RNA with RNA
Integrity Number (RIN) of more than 7.5 was used for
cDNA synthesis. The concentration of the RNA was
measured spectrophotometrically.

Structural verification of the JGI v4.0 transcripts: Reverse
transcription-PCR of the metabolic ORFs

The annotated metabolic ORFs were subjected to
reverse transcription followed by PCR to verify their
predicted sequences. Reverse transcription of RNA was
carried out using Superscript III reverse transcriptase
(Invitrogen) following the manufacturer’s instructions
using random N6 and dT(16) (Ambion) as universal pri-
mers. The reaction mixture contained 1.2 M betaine
(Sigma-Aldrich) to prevent premature terminations
owing to the high G+C content of the C. renhardtii
transcriptome. The synthesized cDNAs were used as
templates in PCR reactions. ORF-specific primers tailed
with Gateway compatible sequences were designed auto-
matically using the OSP program [40] The forward pri-
mer starts from nucleotide A of the ATG start codon
and was flanked with the Gateway B1.1 sequence at its
5" end. The reverse primer starts from the codon imme-
diately before the termination codon and carried the
Gateway B2.1 sequence at its 5" end. All primers had a
melting temperature (Tm) between 55 °C and 65 °C.
KOD hot start DNA polymerase (Novagen) catalyzed
the amplification of ~1,430 ORFs individually in sepa-
rate 50 pl reaction mixtures containing 1.2 M betaine
and 0.25 pg/ul cDNA.

Gateway cloning of the metabolic ORFs, their
transformation and amplicon generation for sequencing
The generated amplicons were recombinationally cloned
into the pDONR223 Gateway vector to generate Entry
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clones [41]. The recombinational cloning was performed
using BP clonase (Invitrogen) following the manufac-
turer’s instructions. The Entry clones were subsequently
transformed into chemically competent E. coli DH5a..
The positive transformants were selected and grown in
96-well format plates containing LB and 100 mg/l spec-
tinomycin. Following growth in liquid media, the trans-
formed bacteria were used as a source of template in
PCR reactions containing 1.2 M betaine and KOD hot
start DNA polymerase (Novagen) to amplify the clones.
Vector primers were used to generate the final DNA
templates for sequencing.

Generation of ORF sequence tags (OSTs) by Sanger
sequencing

PCR products were sequenced bi-directionally using
conventional automated cycle sequencing to generate
OREF sequence tags (OSTs) [42]. Sequencing was carried
out by Agencourt Bioscience Corp.

Forward and reverse sequences were vector-clipped
(using Cross_match, http://www.phrap.org/phredphrap/
general.html), then assembled. We used Phrap (http://
www.phrap.org/) to assemble the forward and reverse
sequences. Both assembled contigs and singlets were
aligned against the coding sequences (CDSs) of corre-
sponding predicted transcripts from C. reinhardtii
assembly v4.0 (http://genome.jgi-psf.org/Chlre4/Chlre4.
home.html) using MUSCLE [43,44]]. The alignment files
were then used to verify the CDSs of the predicted tran-
scripts. An ORF model was considered verified if a con-
tig could be assembled from both end reads and if the
contig verifies the predicted sequence.

ORF model verification by 454FLX sequencing

The generated ORF amplicons were sequenced using
the 454FLX Titanium sequencing system (454 Life
Sciences Corp., Roche). For targeted transcriptome
sequencing, the amplicons generated in RT-PCR reac-
tions were pooled in equimolar ratios. For verification of
cloned ORFs, the PCR products of the entry clones
were pooled in equimolar quantities. The resulting
mixes were partially purified using Qiagen MinElute
PCR purification kit following the manufacturer’s
instruction. Five micrograms of DNA from each sample
was subjected to nebulization for 90 seconds under
nitrogen gas pressure of 30 psi(2.1 bar). After purifica-
tion of the sheared DNA using the MinElute PCR purifi-
cation kit, the DNA fragments were size-selected using
AMPure beads (Agencourt). DNA fragments with the
size range of 300-800 bp were end repaired and the
adaptors were ligated to the ends. After melting into
single stranded DNA molecules, the quality of the DNA
library was assessed on a BioAnalyzer RNA Pico 6000
LabChip (Agilent). The resulting single stranded DNA
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libraries were then purified and used to set up emulsion
PCR reactions according to the manufacturer’s instruc-
tion (454 Life Sciences Corp., Roche). After the amplifi-
cation step, the emulsions were chemically broken and
the beads carrying the amplified DNA library were
recovered and enriched. The sequencing was performed
on the Roche 454 Genome Sequencer Instrument with
the GS FLX Titanium Sequencing Kit XLR70. Approxi-
mately 800,000 DNA-carrying beads along with enzyme
and packing beads were loaded onto a PicoTitrePlate
device. The sequencing was operated and monitored for
~9 hrs during which 200 flow cycles were completed.
The generated data were processed using the GS FLX
data analysis software v2.3. The vector sequences and
Gateway tail sequences were trimmed from the raw
reads and the reads shorter than 20 nt were filtered out.
The trimmed and filtered reads were aligned against JGI
v4.0 reference sequences using the GS Reference Map-
per application (gsMapper v2.3). A minimum overlap
length of 40 nt and minimum overlap identity of 90%
were used to align the reads against the JGI v4.0 refer-
ence sequences. An ORF model was called verified if
more than 98% of its entire length was covered by
(matched to) the assembled contigs from the 454 reads.

Additional material

Additional File 1: JGIv4.0 gene model names, their predicted
sequence, EC annotation, and verification status of their structural
annotation.

Additional File 2: Subcellular localization prediction of JGI v4.0
enzymes predicted by WoLF PSORT as plant or animal proteins.

Additional File 3: A consolidated set of high confidence subcellular
localization predictions made by WoLF PSORT. Subcellular
compartments predicted for JGI v4.0 as plant or animal at 0.85 or
higher ratio relative to other compartments were selected then
consolidated by reporting the prediction with the higher value.
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offers insight into light-driven algal metabolism
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Metabolic network reconstruction encompasses existing knowledge about an organism’s
metabolism and genome annotation, providing a platform for omics data analysis and phenotype
prediction. The model alga Chlamydomonas reinhardtii is employed to study diverse biological
processes from photosynthesis to phototaxis. Recent heightened interest in this species results from
an international movement to develop algal biofuels. Integrating biological and optical data, we
reconstructed a genome-scale metabolic network for this alga and devised a novel light-modeling
approach that enables quantitative growth prediction for a given light source, resolving wavelength
and photon flux. We experimentally verified transcripts accounted for in the network and
physiologically validated model function through simulation and generation of new experimental
growth data, providing high confidence in network contents and predictive applications. The
network offers insight into algal metabolism and potential for genetic engineering and efficient
light source design, a pioneering resource for studying light-driven metabolism and quantitative

systems biology.
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Introduction

Algae have garnered significant interest in recent years for their
potential commercial applications in biofuels (Hu et al, 2008;
Hemschemeier et al, 2009) and nutritional supplements
(Spolaore et al, 2006). Among eukaryotic microalgae, Chlamy-
domonas reinhardtii has arisen as the hallmark, model organism
(Harris, 2001). C. reinhardtii has been widely used to study
photosynthesis, cell motility and phototaxis, cell wall biogen-
esis, and other fundamental cellular processes (Harris, 2001).

Commercial use and basic scientific research of photosyn-
thetic organisms could benefit from better understanding of
how light is absorbed and affects cellular systems. The quality
of light sources implemented in photobioreactors largely
determines the efficiency of energy usage in industrial algal
farming (Fernandes et al, 2010). Light spectral quality also
affects how photon absorption induces various metabolic
processes: photosynthesis, pigment and vitamin synthesis,
and the retinol pathway required for phototaxis.

Metabolic network reconstruction provides a framework to
integrate diverse experimental data for investigation of global

© 2011 EMBO and Macmillan Publishers Limited

properties of metabolism, and as such, can provide clear
advantages as a mode of studying the effects of light upon a
photosynthetic biological system if light input is accounted for
explicitly. The standardized reconstruction process (Thiele
and Palsson, 2010) yields a biochemically and genomically
structured knowledgebase and, coupled with the standard
simulation approach of flux balance analysis (FBA) (Orth et al,
2010), provides a basis for predictive phenotype modeling;
both contexts have been used for a variety of applications
(Durot et al, 2009; Oberhardt et al, 2009; Gianchandani et al,
2010), among them the design of genetic engineering strategies
for production strains (Bro et al, 2006; Park et al, 2011). To date,
however, photon flux, with associated spectral constraints, has
not been integrated into a metabolic network reconstruction.

Characterizing algal metabolism is key to engineering
production strains and framing the study of photosynthesis.
Extensive literature on C. reinhardtii metabolism, reviewed in
Stern et al (2008), and multiple metabolic mutants (Harris
et al, 2008) provide a solid foundation for detailed character-
ization of its metabolic functions. The availability of complete
genome sequence data for C. reinhardtii (Merchant et al, 2007)
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and its functional annotation have enabled bioinformatic
approaches to inform the presence of genome-encoded
enzymes (Grossman et al, 2007; Boyle and Morgan, 2009;
Manichaikul et al, 2009). We have employed these resources to
reconstruct and experimentally validate a genome-scale
metabolic network of C. reinhardtii, the first network to
account for detailed photon absorption permitting growth
simulations under different light sources. This network
accounts for the activity of substantially more genes with
metabolic functions than existing reconstructions (Boyle and
Morgan, 2009; Manichaikul et al, 2009).

Results

Reconstruction contents and advances

The genome-scale C. reinhardtii metabolic network (Figure 1A;
Supplementary Figure S1; Supplementary Table S1; Supple-
mentary Table S2; Supplementary Model S1) accounts for 1080
genes, associated with 2190 reactions and 1068 unique
metabolites, and encompasses 83 subsystems distributed across
10 compartments. As per convention (Reed et al, 2003), we call
this network {RC1080 based on the primary reconstructionist
and the scope of genomic content. Of the putative protein-
coding genes in the C. reinhardtii genome (http://augustus.go-
bics.de/predictions/chlamydomonas/augustus.u5.aa), an esti-
mated 20% function in metabolism (Supplementary Table S3).
{RC1080 accounts for the activity of >32% of the estimated

Figure 1

genes with metabolic functions, a significant expansion over
existing reconstructions (Boyle and Morgan, 2009; Manichaikul
et al, 2009). iRC1080 is the most comprehensive metabolic
network reconstruction of C. reinhardtii to date based on
inclusion of pathways and a level of detail absent from previous
reconstructions.

A major emergent feature of C. reinhardtii metabolism,
apparent in Figure 1A, is the relative centrality of the
chloroplast and its importance in light-driven metabolism.
The chloroplast, including the thylakoid and eyespot sub-
compartments, accounts for >30% of the total reactions in the
network and 9 of the 10 photon-utilizing reactions. The
thylakoid contains essential pathways for photoautotrophic
growth including photosynthesis, chlorophyll synthesis, and
carotenoid synthesis, producing photoprotective pigments
also valuable as fish feed additives and nutritional supple-
ments for human consumption. The eyespot accounts for
retinol metabolism, the mechanistic basis for phototaxis.
Several pathways are partially duplicated across the chlor-
oplast and other cellular compartments, in agreement with
known biochemistry. A few crucial pathways are divided
between the chloroplast and cytosol, including glycolysis and
glycerolipid metabolism. Among the glycerolipids, triacylgly-
cerides carrying high energy, long-chain fatty acids relevant for
biofuel production accumulate substantially in microalgae.
iRC1080 provides a thorough resource for studying these and
other metabolic products and a basis for strain design for
genetic engineering.

Contents of the /RC1080 metabolic network reconstruction. (A) Compartmentalized network diagram. The full genome-scale metabolic network is depicted,

denoting compartments. A high-resolution diagram without compartment labels is also available (Supplementary Figure S1). (B) Global transcript verification status. The
graph shows the distribution of transcripts accounted for in the network categorized by their verification status. Color codes correspond to the noted percentage of
transcript sequence verified experimentally. For example, 42% of transcripts in the network were verified experimentally by 100% sequence coverage. (C) Latent
VLCPUFA pathway diagram. Blue nodes represent metabolites included in /RC1080, and orange nodes represent metabolites not included in /RC1080, hypothesized to
be absent in C. reinhardtii. Green edges represent enzyme activities accounted for in our functional annotation, and the red edge represents the VLCFA elongase
missing from our annotation and hypothesized to have been lost in C. reinhardtifs evolution. This pathway diagram also demonstrates the detail of the high-resolution

network diagram (Supplementary Figure S1).
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iRC1080 considerably expands lipid metabolic pathways
over previous reconstructions. We compared the lipid path-
ways of iRC1080 with several previously published metabolic
reconstructions (Duarte et al, 2007; Feist et al, 2007; Boyle and
Morgan, 2009; Mo et al, 2009; Montagud et al, 2010) counting
the number of genes, reactions, and chemically distinct lipid
molecules included in pathways for each lipid class (Table I).
The extent of gene, reaction, and metabolite content of lipid
pathways in i{R1080 is, in general, greater than previous
reconstructions. The coverage of ketoacyl lipid chemical
properties represented in each network was also analyzed
for all metabolites in fatty acyl, glycerolipid, glyceropho-
spholipid, and sphingolipid classes; the fraction of lipid
metabolites in the networks that account for a given applicable
property was determined (Table I). Lower coverage signifies
incompletely specified molecular species and often lumped

Metabolic network reconstruction of Chlamydomonas
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lipid reactions and metabolites. iRC1080 accounts explicitly for
all metabolites in these pathways, providing sufficient detail to
completely specify all individual molecular species: backbone
molecule and its stereochemical numbering of acyl-chain
positions; acyl-chain length; and number, position, and
cis-trans stereoisomerism of carbon-carbon double bonds.
This level of detail enables a significantly higher degree of
precision in lipid studies and in metabolic engineering design
involving these pathways.

Experimental transcript verification

We have analyzed iRC1080 via experimental transcript
verification under permissive growth conditions (Supplemen-
tary Table S4), representing the largest genome-scale trans-
cript validation effort to date. More than 75% of included

Table I Lipid pathway reconstruction properties in {RC1080 in comparison to other metabolic network reconstructions

Reconstructions
iRC1080 C. [INB305] 1Syn669 iMM904 iAF1260 Recon 1
reinhardtii C. reinhardtii Synechocystis S. cerevisiae E. coli Homo sapiens

Ketoacyl lipid chemical properties®

Backbone molecule 1.00 0.94 1.00 1.00 1.00 1.00

Stereochemical numbering 1.00 0.00 0.60 0.85 1.00 0.00

Acyl-chain length 1.00 0.72 0.90 0.91 1.00 0.70

C=C number 1.00 0.72 0.75 0.91 1.00 0.70

C=C positions 1.00 0.00 0.80 0.42 0.91 0.60

E-Z stereoisomerism 1.00 0.00 0.80 0.50 0.42 0.53
Fattg acyls

G 64 7 13 32 26 91

R® 167 41 71 108 139 233

M 104 21 55 55 95 137
Glycerolipids

GP 40 0 0 18 0 27

R¢ 292 4 0 12 0 13

M 135 4 2 4 7 4
Glycerophospholipids

GP 47 0 8 46 22 87

R® 126 5 7 52 227 51

me 56 4 3 4 102 22
Sphingolipids

GP 8 0 0 21 0 54

R¢ 10 0 0 63 0 79

M 6 0 0 31 0 59
Sterol lipids

GP 22 0 1 32 0 87

R® 34 0 3 49 0 156

me 26 0 4 22 0 105
Prenol lipids

GP 37 4 15 9 16 21

R® 59 5 53 17 20 50

mé 43 4 42 15 17 41
Total lipids

GP 218 1 37 158 64 367

R® 688 55 134 301 386 582

m¢ 370 33 106 131 221 368

“Values are the fraction of lipid metabolites in each network that account for each property, when applicable.

PGene transcripts (can be duplicated across lipid classes).
‘Lipid pathway reactions (non-transport).
dLipid metabolites (unique lipids).
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transcripts were verified at >90% sequence coverage, and
92% of tested transcripts were at least partially validated
experimentally (i.e. a portion of the sequence was recovered in
the sequenced transcripts) (Figure 1B). We also analyzed the
strength of transcript verification by specific metabolic
subsystems (Figure 2, a representative subset; Supplementary
Figure S2, the full set). The full lengths of all transcripts
associated with 10 subsystems were verified, notably includ-
ing biosynthesis of unsaturated fatty acids, histidine metabo-
lism, and phenylalanine, tyrosine and tryptophan
biosynthesis, with 12, 12, and 24 transcripts, respectively.
Many more subsystems were also well verified, 61 out of 76
gene-associated subsystems with >90% of associated tran-
scripts at least partially validated. It should be noted that only
sequencing reads that uniquely map to reference transcript
sequences were counted toward the percentage of length
validation; thus, sequencing reads unique enough to un-
ambiguously specify the corresponding reference transcript
were detected for every transcript with > 0% validation. A few
subsystems stood out as being more poorly verified, including

Figure 2 Experimental transcript verification by subsystem. The graph
summarizes transcript verification status (see Materials and methods and
Supplementary information for details) for 30 of the 76 gene-associated
subsystems of /RC1080. Identical analysis for the full complement of
76 subsystems is also available (Supplementary Figure S2). The x axis
corresponds to the percentage of subsystem-associated transcripts that were
experimentally verified to the extent noted by the color code.
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chloroplast and mitochondrial transport systems and
sphingolipid metabolism, all of which exhibited <80% of
transcripts validated to any extent. This may reflect low
expression level or imperfect structural annotation of these
genes, particularly compartmental transporters. Low expres-
sion levels or complete deactivation of these genes is
consistent with a hypothesized evolutionary trend (see below)
in the case of sphingolipid metabolism.

Evolution of latent lipid pathways

The comprehensive reconstruction of lipid metabolism in
iRC1080 revealed hypothetical latent pathways, the functions
of which have likely been lost through evolution. Previous
studies established that C. reinhardtii lacks the practically
ubiquitous membrane lipids phosphatidylcholine (Giroud
et al, 1988) and phosphatidylserine (Riekhof et al, 2005).
Similarly, our reconstruction suggests that C. reinhardtii also
lacks very long-chain fatty acids (VLCFAs), their polyunsatu-
rated analogs (VLCPUFAs) (Figure 1C), and ceramides.
Surveys of C. reinhardtii lipid species have not detected
VLCFAs (Giroud et al, 1988; Giroud and Eichenberger, 1989;
Tatsuzawa et al, 1996; Dubertret et al, 2002; Kajikawa et al,
2006; Lang, 2007), likely due to a lack of functional VLCFA
elongase (Weers and Gulati, 1997; Guschina and Harwood,
2006; Kajikawa et al, 2006). No candidate VLCFA elongase was
identified in our comprehensive functional annotation (Sup-
plementary Table S3), and our annotation suggests several
downstream gaps in arachidonic acid metabolism as well,
corroborating this hypothesis. Arachidonic acid, the 20-carbon
parent fatty acid of all VLCFAs and VLCPUFAs, is synthesized
by a VLCFA elongase-catalyzed extension of y-linolenic acid,
which is present in C. reinhardtii (Griffiths et al, 2000).
Notably, C. reinhardtii does encode a fatty acid desaturase that
accepts arachidonic acid as substrate (Kajikawa et al, 2006)
and, based on our functional annotation, encodes several
other enzymes that act upon this substrate, indicating that
algal ancestors likely had a functional VLCFA elongase.
Multiple lines of evidence uncovered during the reconstruc-
tion also support the absence of ceramides in C. reinhardtii.
Our functional annotation did not uncover a convincing
candidate for ceramide synthetase (EC:2.3.1.24), a required
enzyme for ceramide synthesis, nor, to our knowledge, has one
been discovered by previous efforts, including C. reinhardtii
enzyme annotations of the Kyoto Encyclopedia of Genes and
Genomes. Similarly, our functional annotation suggests
substantial gaps downstream in the sphingolipid metabolic
pathway. As aforementioned, C. reinhardtii also lacks VLCFAs,
and VLCFA-CoA is a required substrate for the ceramide
synthetase reaction (Hills and Roscoe, 2006). Finally, our
experimental transcript analysis failed to verify 2 out of 8
transcripts associated with sphingolipid metabolism (Figure 2)
that were included in iRC1080, 1 of 2 serine C-palmitoyl-
transferases and a putative sphingosine 1-phosphate aldolase.
This result may reflect still further gene function loss in this
pathway, perhaps occurring more recently in evolutionary
time given that our functional annotation actually detected
candidate sequences for these enzymes. Considering this
evidence, we suggest that the evolutionary history of
C. reinhardtii includes the loss of ceramide metabolism,
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although this hypothesis remains to be verified. Annotated
enzymes in this pathway separated from the broader network
by gaps may represent multifunctional proteins or proteins
that have evolved to function in a pathway distinct from
ceramide synthesis. These gaps in C. reinhardtii metabolism
not only increase understanding of the evolution of algal lipid
pathways but also represent potential targets for genetic
engineering in an effort to expand the diversity of lipids this
alga can synthesize. Such engineering efforts serve as valuable
test cases for engineering industrial strains and could improve
C. reinhardtii as a model alga for biofuel development.

Modeling metabolic light usage

Our reconstruction accounted for effective light spectral ranges
by analyzing biochemical activity spectra (Figure 3A), either
reaction activity or absorbance at varying light wavelengths.
Defining effective spectral bandwidths associated with each
photon-utilizing reaction enabled our network to model
growth under different light sources via stoichiometric
representation of the spectral composition of emitted light,
which we term prism reactions. The coefficients for different

Metabolic network reconstruction of Chlamydomonas
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photon wavelengths in prism reactions correspond to the
ratios of photon flux in the defined effective spectral ranges to
the total photon flux in the visible spectrum emitted by a given
light source (Figure 3A and B). In this manner, it is possible to
distinguish the amount of emitted photons that drive different
metabolic reactions. We created prism reactions for 11 distinct
light sources (Supplementary Figure S3), covering most
sources that have been used in published studies for algal
and plant growth including solar light, various light bulbs,
and LEDs.

The network reconstruction provides a detailed account of
metabolic photon absorption by light-driven reactions.
Photosystems I and II in {RC1080 stoichiometrically absorb
photons according to the Z-scheme (Berg et al, 2007). The
light-dependent protochlorophyllide oxidoreductases require
a single photon per catalysis as demonstrated in wheat
(Griffiths et al, 1996). Extrapolation of UVB energy require-
ments for spontaneous provitamin D3 conversion to vitamin
D; (Bjorn, 2007) based on the average photon energy in the
UVB range suggests a stoichiometric ratio of approximately
one. Two phototactic rhodopsins, reactants of the rhodopsin
photoisomerase reaction, are encoded by C. reinhardtii, one

Figure 3  Analysis of light spectra. (A) Activity and irradiance spectra. The top graph displays activity spectra for photon-utilizing reactions included in iRC1080. The
abbreviated reactions are defined as follows: VITD3, vitamin D3 synthesis; OPSIN, rhodopsin photoisomerase; PCHLD, both protochlorophyllide photoreductase and
divinylprotochlorophyllide photoreductase; PSI, photosystem I; PSII, photosystem II. The y axis for the activity spectra is the fraction of maximum-measured activity with
respect to each noted reaction. Four of the eleven sample irradiance spectra (Supplementary Figure S3) are depicted with y axes set as the percentage of total visible
photon flux at each wavelength (x axis). Effective spectral bandwidths are denoted by vertical dashed lines color coded to match the activity spectra for each reaction.
(B) Prism reaction derivation. The photon flux from wavelengths a to b is normalized by the total visible photon flux from 380 to 750 nm to yield the effective spectral
bandwidth coefficient C. The coefficients for each range are compiled into a single prism reaction for a given light source, representing the composition of emitted light as
defined by photon-utilizing metabolic reactions. Equation variables are defined at top.
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requiring a single photon and one requiring two photons for
activation; the average effective stoichiometric photon count
was measured to be 1.6 (Hegemann and Marwan, 1988).

A prismreaction is the intermediate step between light input
and the specific photon-utilizing metabolic reactions men-
tioned above. Flux through the photon exchange reaction
‘EX_photonVis(e)” represents the total metabolically active
photon flux incident upon the cell. Flux passing through this
exchange reaction then passes through a single user-specified
prism reaction, for example ‘PRISM_solar_litho, and is
distributed across specific spectral ranges. These ranges are
specified explicitly in the photon-dependent metabolic reac-
tion formulas (Supplementary Table S2), thereby making these
reactions wavelength specific. Flux through the photon-
dependent metabolic reactions is then propagated through
the network. Excess wavelength-specific photon fluxes that
are not absorbed metabolically leave the system via demand
reactions, for example ‘DM_photon298(c), completing the
pathway of light through the network.

To accurately model metabolic activity of a photosynthetic
organism, it is also important to consider regulatory effects
resulting from lighting conditions. Indeed, light and dark
conditions have been shown to affect metabolic enzyme
activity in C. reinhardtii at multiple levels: transcriptional
regulation (Bohne and Linden, 2002), chloroplast RNA
degradation (Salvador et al, 1993), translational regulation
(Cahoon and Timko, 2000), and thioredoxin-mediated
enzyme regulation (Lemaire et al, 2004). As a preliminary
attempt to incorporate light and dark regulatory effects,
literature was reviewed to identify such regulation upon
enzymes in {RC1080 (Supplementary Table S5), focusing
mainly on thioredoxin regulation of chloroplast enzymes since
most published data relate to this mode. In the absence of
activity spectra for these effects, it is not yet possible to
represent these effects via prism reactions. Therefore, we
modeled regulation with Boolean reaction flux constraints
following published approaches (Covert et al, 2001).

Environmental and genetic validation of /RC1080

Implementing light-regulated constraints and basic environ-
mental exchange constraints (Supplementary Table S6)
yielded photoautotrophic, heterotrophic, and mixotrophic
models from iRC1080. We simulated various growth condi-
tions (Supplementary Table S7) and all gene knockouts for
which phenotypes have been published and are assessable
in our network (Supplementary Table S8) to validate the
predictive ability of the models. All 30 validations involving
environmental parameters displayed very close agreement
with experimental results (Supplementary Table S7).
Of particular note is the ability of our photosynthetic model
in sunlight to accurately recapitulate O,-PAR (photosyntheti-
cally active radiation) energy conversion efficiency, predicting
an efficiency of 2% compared with the experimental result
(Greenbaum, 1988) of 1.3-4.5%. Of the 14 gene knockouts
simulated, 7 were partially or completely validated relative to
experimental results (Supplementary Table S8). The uncon-
firmed gene knockout phenotypes may result from network
errors or an incomplete set of constraints in the model
(e.g. enzyme capacity, regulatory, thermodynamic, or other
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constraints). No internal model reactions were constrained in
the models except indirectly via constraints on the input
exchanges and the few explicitly noted Boolean regulatory
constraints imposed (Supplementary Table S5). The uncon-
firmed knockout phenotypes were investigated through model
analysis and literature search, although in most cases, current
literature evidence could not completely explain these
discrepancies, leaving them to be fully accounted for by future
studies.

Two discrepancies may result from incomplete genome
functional annotation or missing constraints. Knockout of
mitochondrial NADH:ubiquinone oxidoreductase complex I
(EC:1.6.5.3) in the model fails to recapitulate a reduced
heterotrophic growth phenotype (Remacle et al, 2001a). The
NDA2 and NDA3 genes can substitute completely for this
activity in the current model. Sequence-based localization
analysis places both proteins in the mitochondria, but this may
be incorrect as a recent study suggests that both may be plastid
localized (Desplats et al, 2009). Two other network reactions
can also substitute for the reduction of ubiquinone, succinate
dehydrogenase (ubiquinone) (EC:1.3.5.1) and electron trans-
fer flavoprotein-ubiquinone oxidoreductase (EC:1.5.5.1).
The cytochrome c¢ oxidase complex IV (EC:1.9.3.1) knockout
does not result in an obligate photoautotrophic phenotype
(Remacle et al, 2001b) in the model because the cytochrome c
peroxidase (EC:1.11.1.5) reaction is capable of compensating.
The C. reinhardtii CCPR1 protein is homologous to mitochon-
drial cytochrome c peroxidases from a number of species,
but no focused studies have been carried out to provide further
evidence for this enzyme. In the model, the complex IV and
CCPR1 double knockout is an obligate photoautotroph. These
discrepancies point out important genes that should be the
focus of subsequent experimentation in order to more clearly
understand these metabolic phenotypes.

Another discrepancy may result from missing thermody-
namic constraints. The zeaxanthin epoxidase (EC:1.14.13.90)
knockout does not preclude antheraxanthin, violaxanthin,
or neoxanthin production (Baroli et al, 2003) in the model
because violaxanthin de-epoxidase (EC:1.10.99.3) reactions
compensate. This substitution depends on the reversibility of
these de-epoxidase reactions and may point to missing
thermodynamic constraints or to undiscovered regulation
under this condition.

Two discrepancies result from the lack of accounting for
kinetics of the reactions of ribulose-1,5-bisphosphate carbox-
ylase oxygenase (RuBisCO) from the model. Both phospho-
glycolate phosphatase (EC:3.1.3.18) (Suzuki et al, 1990)
and glycolate dehydrogenase (EC:1.1.99.14) (Nakamura
et al, 2005) deficient mutants require high CO, for photo-
autotrophic growth in vivo, not recapitulated in simulations.
This phenotype results from dominance of the oxygenase over
carboxylase activity of RuBisCO under lower CO, conditions,
both reactions sharing the same catalytic site. In vivo, these
two mutants are deficient in the salvage of carbon from
2-phosphoglycolate, a product of the oxygenase activity of
RuBisCO. Although these two reactions are carried out by the
same enzyme in the model, their fluxes are treated as
independent and not competitive; due to an absence of kinetic
parameters in the model, the effect of relative CO, and O,
concentrations upon RuBisCO activity cannot be explicitly
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expressed. Because the carboxylase activity more efficiently
promotes growth, both high and low CO, conditions drive only
this reaction and not the oxygenase reaction in the model;
therefore, the salvage pathway is unnecessary in the model to
achieve wild-type growth rates.

Finally, two mutant phenotype discrepancies in the model
result from complex compensatory pathways that convert an
input carbon source to the mutant-required carbon source.
The high CO, requirement for photoautotrophic growth due to
knockout of the chloroplast carbonic anhydrase (EC:4.2.1.1)
(Spalding et al, 1983; Funke et al, 1997) can be compensated
for in the model by activity of a six-reaction pathway of
pyrimidine metabolism leading from bicarbonate incorpora-
tion via carbamoyl-phosphate synthase (EC:6.3.5.5) to con-
version to CO, via orotidine-5’-phosphate decarboxylase
(EC:4.1.1.23). The chloroplast ATP synthase (EC:3.6.3.14)
deficient mutant (Smart and Selman, 1991; Dent et al, 2005;
Drapier et al, 2007) with an acetate-requiring phenotype can
be compensated for in the model by a complex pathway
consisting of >15 reactions by which CO, is converted to
acetate, which is then used in pathways similar to those
supporting heterotrophic growth. Although this complex
pathway has many branch points, it is notable that chloroplast
malate dehydrogenase (EC:1.1.1.40) and the diffusion of
pyruvate between the cytosol and chloroplast are essential to
coupling the CO, fixation reactions to pyruvate metabolism
and ultimate conversion to acetate but are not essential to
the wild-type photoautotrophic or heterotrophic models. Loss
of either of these conditionally essential reactions prevents the
CO,-to-acetate conversion and recapitulates the acetate-
requiring phenotype. Given the complexity of these compen-
satory pathways, a number of possible missing constraints
could explain their inactivity in vivo under photosynthetic
conditions, and the model offers a starting point to explore
possible targets of regulation under these conditions.

Gene essentiality analysis

To demonstrate the prospective use of iRC1080 in predi-
cting phenotypic outcomes of genetic manipulations of
C. reinhardtii, comprehensive essentiality analysis of all
simulated single-gene knockouts was performed in models
under four basic environmental conditions: growth in sunlight
with and without acetate, aerobic growth in dark on acetate,
and anaerobic subsistence in dark on starch. Phenotypes were
defined as growth equivalent to wild-type, reduced growth
relative to wild-type, or lethal based on the comparative
objective fluxes of the mutant and wild-type models
(Supplementary Table S9). A lethal phenotype was defined
as no flux through the biomass reaction (defined as the
objective function) in the mutant. Simulation results exhibited
distinct metabolic system dependencies under each condition.
There were 201 and 144 lethal knockouts in the model with
sunlight and with and without acetate, respectively. There
were 147 and only 3 lethal knockouts in the aerobic and
anaerobic dark model, respectively. The metabolic processes
associated with essential genes were ranked, and the three
subsystems associated with the essential genes were compared
under each condition. Photosynthesis, porphyrin and
chlorophyll metabolism, and phenylalanine, tyrosine, and
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tryptophan biosynthesis were the most essential subsystems in
light without acetate. Phenylalanine, tyrosine, and tryptophan
biosynthesis, porphyrin and chlorophyll metabolism, and
purine metabolism were the most essential subsystems in
light with acetate. Expectedly, photosynthesis is most crucial
for photoautotrophic growth and not required in the presence
of acetate. The dark, aerobic condition had the same top
ranked essential subsystems as in the mixotrophic condition,
which is also expected as amino acids, chlorophyll, and
nucleotides make up a high proportion of the required biomass
components under both conditions. For subsistence in dark on
starch, glycolysis/gluconeogenesis, starch metabolism, and
starch and sucrose metabolism were the most essential
subsystems, paralleling the expected core pathways for ATP
maintenance with starch breakdown. While these predicted
genotype-phenotype relationships demonstrate a compelling
prospective use of the network, the majority of the mutant
phenotypes remain to be validated experimentally; however,
these predictions could be used to help define the scope
and expected outcomes of such future studies.

Light-source-specific model validations

Next, we performed more extensive validations of light models
grown under specific light sources at varying intensities.
Varying sunlight intensity in our model and evaluating
photosynthetic O, evolution, we observed that the model
reached photosynthetic saturation at light intensity consistent
with experimental measurement (Polle et al, 2003)
(Figure 4A). Our model under red LED light (653 nm) also
showed fair agreement with our experimentally measured
maximum growth rate across the range of unsaturated photon
flux (Figure 4B), despite divergence above the experimental
saturation point. The principal explanation for this divergence
lies in the relative CO, supplies of the experimental setup and
the model. All reported photoautotrophic model simulations
utilize the same maximum CO, exchange constraint corre-
sponding to the maximum-measured cellular uptake rate
under non-CO,-limiting conditions (Supplementary Table S6),
while the CO, supply in our bioreactor setup was clearly
growth-limiting given that the light-saturated maximum
growth rate was 0.01 gDW/h, much lower than the maximum
growth rate of 0.14 gDW/h under non-CO,-limiting conditions
(Janssen et al, 2000). It should also be noted that the linearity
of the simulation trends is a property of steady-state system
modeling, which is incapable of kinetic representation of
growth shifts observable in the in vivo experiments. For further
validation, we present that the maximum biomass yield under
incandescent white light is 5.7 x 107° gDW/mE (Janssen et al,
2000), in close agreement with our analogous prediction of
2.6x107° gDW/mE (Figure 4C). Similarly, our predicted
biomass yield on 674 nm peak LED light of 1.1 x10~*gDW/
mE is on the same order of magnitude as our experimental
results for C. reinhardtii under 660 nm peak LED light near
growth-saturating photon flux, 4.3 x10™*gDW/mE. This
agreement is striking given that the network explicitly
accounts for the spectral photon flux of these light sources
and the subsequent processing of this energy to generate all of
the constituents of biomass without any parameter fitting to
the experimental data. Together, these results constitute an
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Figure 4 Photosynthetic model simulation results. (A) O, photoevolution under solar light. Simulated (blue line) and experimentally measured (green dots) O,
evolution are compared. (B) Photosynthetic growth under red LED light. Simulations were performed using the 653-nm prism reaction, and experimentally grown culture
was exposed to 660 nm LED light. Simulated (blue line) and experimentally measured (green dots) growth are compared. (C) Efficiency of light utilization. The minimum
photon flux required for maximum-simulated growth (bottom), biomass yield (middle), and energy conversion efficiency (top) are presented for 11 light sources derived

from measured spectra and for the designed growth-efficient LED.

important validation of our models using three different light
sources.

To quantitatively evaluate the significance of the agreement
between our reported model simulations using prism reactions
derived through analysis of irradiance spectra and experi-
mental measurements under the three light sources reported
above, we compared the reported simulation results for each
of these light sources with an unbiased sample of results
representative of potential solutions achievable using our
network. We sampled the space of possible light models by
generating random prism reactions with the same total
metabolically active photon flux. To obtain stoichiometric
coefficients for a random prism reaction, a set of random
fractions of the sum of stoichiometric coefficients of the
prism reaction representing the evaluated light source was
generated, contingent upon resulting in the same sum of
coefficients. The simulations as reported above for sunlight,
red LED, and white incandescent light were repeated using
such random prism reactions. The Euclidean distance between
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the simulated and experimental results was compared with the
distribution of distances for 10 000 randomly sampled results
(Figure 5). The probability of randomly achieving experi-
mental agreement closer than seen in our simulations was
determined empirically based on these distributions
of distances. Only 77 of 10000 randomized simulations
(Figure 5A) had experimental agreement better than the
simulated oxygen photoevolution under sunlight (Figure 4A),
yielding an empirical P-value of 0.0077, and indicating our
model had experimental agreement statistically significantly
better than a random model constrained to have the same total
metabolically active photon flux. Simulated growth under
665nm peak LED (Figure 4B) had a suggestive P-value of
0.1947 (Figure 5B), although the reported simulation was still
closer to experiment than the mean of randomized simula-
tions. Our simulated growth under white incandescent light
was statistically significantly closer to experiment (Janssen
et al, 2000) than random (Figure 5C) with a P-value of 0.0285.
This analysis shows that the reported model for each of these
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Figure 5 Distributions of randomly sampled distances from experimental
measurements. (A) O, photoevolution under solar light. (B) Photosynthetic
growth under red LED light. (C) Photosynthetic growth under white incandescent
light. All three distance distributions result from 10 000 unbiased sampling results
in which random prism reactions were generated with the same total
metabolically active photon flux as the given light source. Each distribution is
depicted in 25 equal-sized bins. The red dot in each plot is placed over the
bin in which the distance of the reported simulation result for the given light
source falls; the vertical placement of each red dot indicates the number of
randomly sampled distances within the same bin that are less than that of
the reported result.

light sources is exceptionally close to recapitulating experi-
mental results and thus serves as an excellent validation.
These results indicate that the network has the capacity to
broadly differentiate light-dependent growth based on spectral
properties and that the formulation of a prism reaction serves
to accurately narrow the space of possible flux distributions
relevant to a specific light source.

Application of /RC1080 to evaluate light source
efficiency and design

Our photosynthetic model was applied prospectively to
evaluate the efficiency of light utilization under different light
sources. The photon energy conversion efficiency (Supple-
mentary Equation 1) and biomass yield on light (Supplemen-
tary Equation 2) were computed for each light source given the
minimum incident photon flux required to achieve maximum
growth rate (Figure 4C); the minimum photon flux for
maximum growth rate is the growth-saturating photon flux
value for a given light source. One clear result is that red LEDs
provide the greatest efficiency in terms of both absorbed
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photon energy and biomass yield, about two and three times as
efficient as can be optimally achieved in sunlight by these
respective measures. Although experimental growth data for
validation is only presented for three light sources, simulation
results are presented for all 11 light sources for which
irradiance spectra were obtainable (Figure 4C). This analysis
demonstrates the prospective extensibility of the network and
modeling approach to any possible lighting condition, natural
or manmade, for which an irradiance spectrum can be
measured.

Given the capability of our photosynthetic model to evaluate
light source efficiency, we applied it to design an LED spectrum
providing maximum photon utilization efficiency for growth
(Supplementary Figure S3). The result was a 677-nm peak LED
spectrum with a total incident photon flux of 360 uE/m?/s
(Figure 4C; Supplementary Figure S3), which is quite close to
the 674-nm LED with a minimum incident photon flux of
362 pE/m?/s for maximum growth. This result suggests that
for the simple objective of maximizing growth efficiency,
LED technology has already reached an effective theoretical
optimum, which is further supported by experimental
measurements of the spectral peak of light absorption for
green algae (Akkerman et al, 2002) and the quantum action
spectrum of land plants (Barta et al, 1992) (Supplementary
Table S7).

Discussion

We have presented a genome-scale network reconstruction of
C. reinhardtii metabolism, well validated in content and
function, and its application for detailed modeling of diverse
light sources. Initial model validations also highlight the need
for more experimental studies to uncover regulatory mechan-
isms in order to expand understanding of the complexity of
light regulation of algal metabolism. This open research topic
presents important challenges and opportunities in enumerat-
ing such effects on a genome scale.

Given the importance of lipid metabolism in biofuel
production, {RC1080 was reconstructed enumerating all lipids
supported by evidence in the literature and genome functional
annotation. The capacity of iRC1080 as a knowledgebase was
demonstrated through analysis of lipid metabolism to generate
novel hypotheses about latent metabolic pathways resulting
from algal evolution. In particular, the exclusion of certain
enzymatic reactions in VLCFA and sphingolipid pathways
from {RC1080 suggests evolutionary recession of these path-
ways in C. reinhardtii, a hypothesis supported by undetected
lipids in experimental measurements, gaps in genome func-
tional annotation for these enzymes, and incomplete transcript
verification for other enzymes included in these pathways. Not
only do these network gaps reflect the relatively simple lipid
biosynthetic capabilities of C. reinhardtii among microalgae,
but their identification suggests gene insertions that could
expand its lipid metabolic repertoire, relevant for industrial
and scientific purposes. Of particular interest may be the
potential for enabling algal synthesis of essential fatty acids for
human health such as docosahexaenoic acid (Yashodhara
et al, 2009). Candidate enzymes for the conversion
of arachidonic acid to essential fatty acids downstream of the
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apparently absent VLCFA elongase reaction are present in our
functional annotation.

The models developed from {RC1080 provide a platform for
prediction of phenotypic outcomes of system perturbations,
light source evaluation and design, and genetic engineering
design for production of biofuels and other commodity
chemicals. We demonstrated an approach applying iRC1080
to the design of an energetically efficient light source
for growth, a novel application of metabolic networks.
Other light sources may be more efficient for other metabolic
objectives or under other environmental conditions or
genetic backgrounds. This result could be of significant
interest to the metabolic engineering and bioreactor-design
communities because it demonstrates that our network
and light-modeling approach are capable of accurately
predicting light source efficiencies in terms of a metabolic
objective.

The prism reactions developed and applied in this study to
quantitatively integrate spectral quality with biological activ-
ity represent a significant integration of diverse data types for
biological system modeling, which hopefully will encourage a
new paradigm for systems biology. This modeling approach
could be used for applications beyond light source design,
including as a metabolic basis for studying and simulating
phototaxis. Given the acquisition of appropriate biological
spectral activity data, this approach could be extended to other
biological light-response phenomena and other organisms.
The importance of understanding how light parameters affect
biological systems may also extend beyond natural phenom-
ena with recent progress in protein engineering leading to
chimeric light-inducible proteins (Shimizu-Sato et al, 2002;
Levskaya et al, 2005).

The iRC1080 network and presented metabolic modeling
represent a milestone in systems biology. Our network
provides a broad knowledgebase of the biochemistry and
genomics underlying global metabolism of a photoautotroph,
and our modeling of light-driven metabolism exemplifies how
integration of largely unvisited data types, such as physico-
chemical environmental parameters, can expand the diversity
of applications of metabolic networks.

Materials and methods

Metabolic network reconstruction

Building from our previously published reconstruction of C. reinhard-
tii central metabolism (Manichaikul et al, 2009), iAM303, the iRC1080
network was reconstructed in a bottom-up manner according
to current standards (Thiele and Palsson, 2010) on a pathway-by-
pathway basis, drawing biochemical, genomic, and physiological
evidence from >250 publications (Supplementary Table S2). The
genomic evidence was derived from our own functional annotation
(Supplementary Table S3) of metabolic enzymes, coenzymes, and
transport proteins. Network gap-filling was performed to make
pathways functional and account for dead-end metabolites. Global
quality control checks were then performed, including elemental
balancing and elimination of as many internal thermodynamically
infeasible loops and new photon-driven, input-only pathways as
possible (Supplementary Figure S4; Supplementary information). We
also accounted for subcellular compartment pH in the protonation
states of metabolites as much as possible.

iRC1080 is publicly available at http://www.ebi.ac.uk/biomodels
(Accession: MODEL1106200000) and as Supplementary Model S1.
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Functional annotation of transcripts

Functional annotation for RC1080 was performed using a consensus
of two separate approaches. In the first approach, gene models (http://
augustus.gobics.de/predictions/chlamydomonas/augustus.u5.aa) from
the Augustus update 5 (AuS) of C. reinhardtii genome assembly
version JGI v4.0 were functionally annotated by assigning enzyme
classification (EC) terms using BLASTP results against UniProt (http://
www.uniprot.org/) and AraCyc (http://www.arabidopsis.org/biocyc/)
enzyme protein sequences and their EC annotations as the basis. The
second approach followed from mapping of Au5 gene models
to annotated JGI v3.1 gene models, for which EC terms and Gene
Ontology annotation were assigned using a combination of BLASTP,
AutoFACT, InterProScan, and PRIAM. The comprehensive annotation
is presented in Supplementary Table S3. See Supplementary informa-
tion for full details.

Growth simulations

Simulation procedures consisted of FBA (Orth et al, 2010) and flux
variability analysis (FVA) (Mahadevan and Schilling, 2003) as
implemented in the COBRA toolbox (Becker et al, 2007), testing
model capabilities while optimizing biomass functions to simulate
growth (Supplementary Table S10) or subsistence on starch by
optimizing ATP maintenance. FBA is a widely used simulation
approach for large-scale, constraint-based metabolic models and has
become a standard method in the systems biology field with a long
history of success (Gianchandani et al, 2010). Different environmental
conditions were modeled by appropriately setting reaction flux
constraints in {RC1080 (Supplementary Table S6) including environ-
mental exchanges, non-growth associated ATP maintenance, O,
photoevolution, starch degradation, and light- or dark-regulated
enzymatic reactions (Supplementary Table S5).

C. reinhardtii strains and growth conditions

For transcript verification experiments, C. reinhardtii strain CC-503
was grown in tris-acetate-phosphate medium containing 100 mg/l
carbamicillin without agitation, at room temperature (22-25°C) and
under continuous illumination with cool white light at a photosyn-
thetic photon flux of 60 pE/m?/s.

For growth experiments under 660 nm peak LED light (Supplementary
Figure S5), C. reinhardtii strain UTEX2243 was grown in a bubble
column photobioreactor at 23-27°C with P49 medium. The total volume
of algal culture was 300 ml, and the gas supply was 180 ml/min air with
2.5% CO,. The 660-nm peak LED light supply was set at 10kHz
frequency and different duty cycles to get varied average photon fluxes.

Transcript verification by sequencing

ORF amplicons were generated from C. reinhardtii cells by RT-PCR
from RNA or PCR from Gateway clones. The Roche 454FLX Titanium
sequencing system was used for sequencing of the generated ORF
amplicons according to the manufacturer’s instructions. The gener-
ated data were processed using the GS FLX data analysis software v2.3.
Minimum overlap length of 40 nucleotides and minimum overlap
identity of 90% were used to align the sequencing reads against the
Aus reference sequences. ORFs encoding transporter proteins were
verified by capillary Sanger sequencing.

Prism reaction derivation

Spectral bandwidths that effectively drive each photon-utilizing
reaction in {RC1080 were determined from published experimental
activity spectral data or absorbance data. Effective spectral band-
widths were defined as the full width half maximum of activity,
denoted by color-paired dashed lines in Figure 3A. The effective
spectral bandwidths were used to derive stoichiometric coefficients of
the prism reactions used to quantitatively represent different light
sources from the composition of their published irradiance spectra,
converted to photon flux units according to Supplementary Equations
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3 and 4. Coefficients for each of the effective spectral bandwidths were
computed based on Equation 1.

o JaL(ydr

a_m

380 nm
Ct = effective bandwidth coefficient (1)
L(A) = photon fluxasa function of wavelength
a = effectivebandwidth lower limit
b = effective bandwidth upper limit

Each coefficient represents the ratio of photon flux in the defined
effective bandwidth to total visible photon flux. Definite integrals in
Equation 1 were approximated using the trapezoidal rule. For each
light source, all effective bandwidth coefficients were compiled into a
single reaction in the form of Equation 2.

(C3%nm)photon298 + (C45¢mm)photond37
+ (C333hm)photon438 + (C722M)photon450
+ (C325mm)photon490 + (Cenm)photon646
+( ) ( )

C885nM) bhoton673 + photon680

photonVis —

)

691nm
C662nm

Constraints on prism reaction fluxes (Supplementary Table S6) were
derived from the total visible photon flux, the definite integral of the
spectrum from 380 to 750nm. The total experimentally measured
emitted visible photon flux was converted to model units of incident
photon flux using the values in Supplementary Table S11 and
Supplementary Equations 5 and 6. Prism reactions for 11 different
light sources (Supplementary Figure S3) were generated.

Random sampling of prism reaction space and
significance test

For a given prism reaction, first the sum of the stoichiometric
coefficients was calculated, representing the total quantity of
metabolically active photons per incident photon from the specified
light source. Next, to sample the space of prism reactions, 10000
random prism reactions with the same sum of stoichiometric
coefficients were generated and used in growth simulations. In these
simulations, input photon flux was constrained to the reported
experimental values, generating a set of simulated results (biomass
or photosynthetically evolved O, flux, depending on the experimental
parameter) with one value corresponding to each experimental data
point. The Euclidean distance between the sampled and experimental
results was calculated for each of the 10000 randomized prism
reactions (Figure 5). The significance of the experimental agreement
with simulations reported for a given prism reaction derived directly
from analysis of irradiance spectra was established by comparison
between the corresponding Euclidean distance and the distribution of
distances from the randomly sampled prism reactions. Probability of
achieving equal or closer results to experiments by chance was
computed as the proportion of smaller values in the randomly sampled
distribution of 10 000 distances.

Procedure for efficient LED design

Multiple iterations of FVA were used to maximize growth while
minimizing the energy of the sum of individual wavelengths of model
photon flux. The ratios of these individual wavelength photon fluxes to
total photon flux were set as stoichiometric coefficients for a
theoretical maximum-efficiency prism reaction. The Euclidean vector
distance was computed (Supplementary Figure S6) between this set of
coefficients and prism reaction coefficients calculated for an LED
spectrum of the same shape as the experimentally measured 674 nm
peak LED but centered at varying wavelengths across the visible
spectrum, with a total photon flux equal to the total theoretical
maximum-efficiency photon flux. The spectrum corresponding to the
minimum distance was taken as the solution and subsequently tested
through growth simulation.

© 2011 EMBO and Macmillan Publishers Limited
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Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (Www.nature.com/msb).
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