110 research outputs found

    Quantum quenches in the many-body localized phase

    Get PDF
    Many-body localized (MBL) systems are characterized by the absence of transport and thermalization, and therefore cannot be described by conventional statistical mechanics. In this paper, using analytic arguments and numerical simulations, we study the behaviour of local observables in an isolated MBL system following a quantum quench. For the case of a global quench, we find that the local observables reach stationary, highly non-thermal values at long times as a result of slow dephasing characteristic of the MBL phase. These stationary values retain the local memory of the initial state due to the existence of local integrals of motion in the MBL phase. The temporal fluctuations around stationary values exhibit universal power-law decay in time, with an exponent set by the localization length and the diagonal entropy of the initial state. Such a power-law decay holds for any local observable and is related to the logarithmic in time growth of entanglement in the MBL phase. This behaviour distinguishes the MBL phase from both the Anderson insulator (where no stationary state is reached), and from the ergodic phase (where relaxation is expected to be exponential). For the case of a local quench, we also find a power-law approach of local observables to their stationary values when the system is prepared in a mixed state. Quench protocols considered in this paper can be naturally implemented in systems of ultra cold atoms in disordered optical lattices, and the behaviour of local observables provides a direct experimental signature of many-body localization.Comment: 11 pages, 4 figure

    Interaction-tuned compressible-to-incompressible phase transitions in the quantum Hall systems

    Full text link
    We analyze transitions between quantum Hall ground states at prominent filling factors ν\nu in the spherical geometry by tuning the width parameter of the Zhang-Das Sarma interaction potential. We find that incompressible ground states evolve adiabatically under this tuning, whereas the compressible ones are driven through a first order phase transition. Overlap calculations show that the resulting phase is increasingly well described by appropriate analytic model wavefunctions (Laughlin, Moore-Read, Read-Rezayi). This scenario is shared by both odd (ν=1/3,1/5,3/5,7/3,11/5,13/5\nu=1/3, 1/5, 3/5, 7/3, 11/5, 13/5) and even denominator states (ν=1/2,1/4,5/2,9/4\nu=1/2, 1/4, 5/2, 9/4). In particular, the Fermi liquid-like state at ν=1/2\nu=1/2 gives way, at large enough value of the width parameter, to an incompressible state identified as the Moore-Read Pfaffian on the basis of its entanglement spectrum.Comment: 4 pages, 5 figures; modified version as appears in PR

    Tunable Electron Interactions and Fractional Quantum Hall States in Graphene

    Full text link
    The recent discovery of fractional quantum Hall states in graphene raises the question of whether the physics of graphene and its bilayer offers any advantages over GaAs-based materials in exploring strongly-correlated states of two-dimensional electrons. Here we propose a method to continuously tune the effective electron interactions in graphene and its bilayer by the dielectric environment of the sample. Using this method, the charge gaps of prominent FQH states, including \nu=1/3 or \nu=5/2 states, can be increased several times, or reduced all the way to zero. The tunability of the interactions can be used to realize and stabilize various strongly correlated phases in the FQH regime, and to explore the transitions between them.Comment: 4.2 pages, 5 figure

    Atypical Fractional Quantum Hall Effect in Graphene at Filling Factor 1/3

    Full text link
    We study the recently observed graphene fractional quantum Hall state at a filling factor νG=1/3\nu_G=1/3 using a four-component trial wave function and exact diagonalization calculations. Although it is adiabatically connected to a 1/3 Laughlin state in the upper spin branch, with SU(2) valley-isospin ferromagnetic ordering and a completely filled lower spin branch, it reveals physical properties beyond such a state that is the natural ground state for a large Zeeman effect. Most saliently, it possesses at experimentally relevant values of the Zeeman gap low-energy spin-flip excitations that may be unveiled in inelastic light-scattering experiments.Comment: 4 pages, 3 figures; slightly modified published versio

    -Wave Pairing in Quantum Hall Bilayers

    Get PDF
    We show that the wave functions that describe the ground states of putative -wave-paired phases in quantum Hall bilayers, like the Pfaffian at =1/2 or the paired phase at =1, are more likely to describe the excited states of Fermi liquids at these filling factors. We point out to the close competition between Fermi liquid and paired phases, which leads to the conclusion that in the experiments only direct transitions from the correlated 111 and 331 states into Fermi liquid(s) are likely to be observed

    Fibonacci anyons and charge density order in the 12/5 and 13/5 plateaus

    Get PDF
    The ν=12/5\nu=12/5 fractional quantum Hall plateau observed in GaAs wells is a suspect in the search for non-Abelian Fibonacci anyons. Using the infinite density matrix renormalization group, we find clear evidence that---in the absence of Landau level mixing---fillings ν=12/5\nu = 12/5 and ν=13/5\nu=13/5 are in the k=3k = 3 Read-Rezayi phase. The lowest energy charged excitation is a non-Abelian Fibonacci anyon which can be trapped by a one-body potential. We point out extremely close energetic competition between the Read-Rezayi phase and a charge-density ordered phase, which suggests that even small particle-hole symmetry breaking perturbations can explain the experimentally observed asymmetry between ν=12/5\nu = 12/5 and 13/513/5. Reducing the thickness of the quantum well drives a transition from the homogeneous Read-Rezayi phase to the charge-density ordered phase, providing a plausible explanation for the absence of a ν=12/5\nu=12/5 plateau in narrow GaAs wells
    corecore