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Many-body localized (MBL) systems are characterized by the absence of transport and thermalization and,
therefore, cannot be described by conventional statistical mechanics. In this paper, using analytic arguments
and numerical simulations, we study the behavior of local observables in an isolated MBL system following a
quantum quench. For the case of a global quench, we find that the local observables reach stationary, highly
nonthermal values at long times as a result of slow dephasing characteristic of the MBL phase. These stationary
values retain the local memory of the initial state due to the existence of local integrals of motion in the MBL
phase. The temporal fluctuations around stationary values exhibit universal power-law decay in time, with an
exponent set by the localization length and the diagonal entropy of the initial state. Such a power-law decay holds
for any local observable and is related to the logarithmic in time growth of entanglement in the MBL phase. This
behavior distinguishes the MBL phase from both the Anderson insulator (where no stationary state is reached)
and from the ergodic phase (where relaxation is expected to be exponential). For the case of a local quench, we
also find a power-law approach of local observables to their stationary values when the system is prepared in
a mixed state. Quench protocols considered in this paper can be naturally implemented in systems of ultracold
atoms in disordered optical lattices, and the behavior of local observables provides a direct experimental signature
of many-body localization.
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I. INTRODUCTION

Over the past decade, there has been significant progress
in understanding dynamics, and in particular, the mechanisms
of thermalization and its breakdown in closed quantum many-
body systems [1]. The renewed interest in the emergence and
limitations of statistical mechanics has largely been inspired
by the revolution in experimental techniques, which lead to the
realization of isolated, tunable quantum many-body systems
of cold atoms [2], trapped ions [3], and superconducting
qubits [4]. Such systems allow one to create nonequilibrium
many-body states and characterize their unitary evolution via
measurements of physical observables.

At this point, there is numerical [5] and experimental (see
Ref. [1] for a review) evidence that certain closed quantum
systems (which we refer to as ergodic) do thermalize as a
result of unitary evolution, despite always being in a pure state:
local observables reach stationary values that are determined
only by the global characteristics of the initial state (e.g.,
energy and particle number). It is believed that the mechanism
underlying thermalization is the “eigenstate thermalization
hypothesis” (ETH) [6,7], which states that individual many-
body eigenstates of ergodic systems are locally thermal,
with the observables described by an appropriate Gibbs
ensemble.

However, not all systems thermalize; much work addressed
the dynamics in Bethe ansatz integrable systems, which are
characterized by an infinite number of integrals of motion [8].
In a pioneering experiment, Kinoshita et al. [9] demonstrated
the lack of complete thermalization in an integrable system
of 1D bosons. Theoretical works [10–14] indicate that in
integrable systems stationary values of local observables are
given by so called “generalized Gibbs ensemble,” which
accounts for the additional conservation laws.

Recently, it has become evident that there exists another
general class of many-body systems which break ergodicity
and fail to thermalize—the many-body localized (MBL) sys-
tems [15–18]. Many-body localization is driven by disorder,
and loosely can be viewed as Anderson localization [19] in the
many-body Hilbert space. Similar to the Anderson insulator
of noninteracting particles, when decoupled from a thermal
bath the MBL systems do not conduct heat or particle number
currents, and therefore cannot fully thermalize.

It was recently shown that the lack of thermalization in the
MBL phase can be linked to the existence of an extensive
number of emergent integrals of motion, which strongly
restrict quantum dynamics [20,21]. These integrals of motion
are local, in the sense that they act nontrivially only on a small
number of physical degrees of freedom. In systems where all
the many-body states are localized, local integrals of motion
form a complete set, as their number is equal to the number of
physical degrees of freedom. For example, in an MBL system
of N interacting spins, it is possible to define N local conserved
“effective” spins. A key property of MBL systems compared
to the Bethe ansatz integrable systems is their robustness: if the
Hamiltonian of an MBL system is slightly perturbed, it remains
in the MBL phase, and a new set of local integrals of motion
can be defined. In contrast, even small generic perturbations
can break the integrability by Bethe ansatz. Thus many-body
localization gives rise to a new class of nonergodic phases of
matter.

The existence of an extensive set of local integrals of
motion leads to novel dynamical properties of the MBL
phase, which distinguish it from ergodic and Bethe ansatz
integrable systems. The main goal of this paper is to study
the experimentally measurable signatures of the dynamics
in the MBL phase. To that end, we study an MBL system
subject to an instantaneous quantum quench—a standard setup
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used to characterize quantum many-body dynamics (see, e.g.,
Ref. [1]). We focus on the behavior of local observables. We
argue that, as a result of residual interactions in the MBL
phase, which give rise to dephasing [20,21,23,24], the system
reaches a highly nonthermal stationary state at long times.
Any local observable reaches a stationary value at long times,
which retains the memory of the initial state.

Temporal fluctuations of local observables around their
long-time value generally decay universally, according to a
power-law with an exponent set by the localization length
and the properties of the initial state (the density of its
second diagonal Renyi entropy). Power-law relaxation is a
characteristic feature of an MBL system, which distinguishes
it from both the Anderson insulator (where relaxation is absent)
and from the ergodic phase (where relaxation is expected to
be exponential). The dynamics of the MBL phase may be
considered as described by a special kind of the generalized
Gibbs ensemble, where all conserved quantities are strictly
local [22]. Therefore, in contrast to integrable systems, the
only possible mechanism of relaxation is dephasing, resulting
in a universal slow relaxation of observables (see Sec. VII for
more detailed discussion).

The power-law temporal fluctuations of local observables
following a quantum quench provide a direct experimental
signature of the dynamics in the MBL phase, which is
limited to an exponentially slow dephasing between remote
degrees of freedom. Previous works [20,21,23,24] showed
that such dephasing underlies the logarithmic-in-time growth
of entanglement for initial product states [23,25,26]. This
should be contrasted with ballistic spreading of entanglement
and quantum correlations in Bethe-ansatz-integrable systems
(according to standard Lieb-Robinson bounds [27–29]). We
note that an alternative way of probing MBL in a spin-echo-
type experiment was recently suggested in Ref. [30] (see also
Ref. [31] for discussion of Loschmidt echo in MBL phase).
Also, in Ref. [32], it was shown that the dephasing dynamics
in the MBL phase leads to characteristic revivals of local
observables.

The paper is organized as follows. In Sec. II, we review
the effective description of the MBL phase based on the
picture of local integrals of motion [21,23]. In Sec. III, we
introduce the physical model that will be the subject of our
numerical studies. Next, in Sec. IV, we discuss the physics
of a global quench within the effective model of the MBL
phase. In particular, we analyze the behavior of single- and
multi-spin operators following a quench in one-dimensional
MBL systems, and comment on different types of initial states.
In Sec. V, we study the behavior of physical observables
following a global quench and present results of numerical
simulations. Section VI is devoted to local quenches, while
Sec. VII contains the summary of our results and concluding
remarks.

II. EFFECTIVE MODEL OF THE MANY-BODY
LOCALIZED PHASE

Throughout the paper, we consider MBL systems on a
lattice that may naturally be realized in disordered optical
lattices [33–35], systems of trapped ions, and NV centers
in diamond [36,37]. We will assume that all states in the

many-body spectrum of our system are localized, that is, many-
body localization persists up to the infinite temperature [17].
Numerical studies [18,23,38,39] have provided support for the
existence of such an infinite-temperature MBL phase in certain
disordered spin models. One such model will be described in
Sec. III below.

We will analyze the dynamical properties of the MBL
phase using an effective model introduced in Refs. [20,21].
This model is based on the hypothesis that the MBL phase is
characterized by a complete set of local integrals of motion,
with exponentially decaying interactions between them. The
validity of this picture was recently proven rigorously for
certain spin chains [40], and local integrals of motion have
been explicitly constructed numerically [41] and perturba-
tively [42].

The choice and representation of the local conserved
quantities is not unique. For our purposes, it is convenient
to use the spin-1/2 representation. In an interacting chain
of L spins 1/2, with Hilbert space dimension 2L, we can
choose L operators τ z

i which can be viewed as z projections of
some “effective” spins (“l-bits” in terminology of Ref. [21]),
and satisfy the following properties: (i) each τ z

i commutes
with the Hamiltonian Ĥ , and other τ z operators: [τ z

i ,Ĥ ] = 0,
[τ z

i ,τ z
j ] = 0; (ii) each τ z

i is local: it strongly affects only the
degrees of freedom in some finite region of space (support),
and its effect on remote regions decays exponentially with
the distance from its support. We will choose labels i in
such a way that they reflect the spatial structure of the local
integrals of motion, and |i − j | is proportional to the distance
between supports of τ z

i ,τ z
j . In an MBL spin system, τ z

i can
be viewed as the physical spin operator σ z

i dressed with a
quasilocal unitary transformation. The role of this unitary
transformation is to “unwind” the eigenstates of Ĥ into product
states, and its existence is closely related to the fact that nearly
all MBL eigenstates obey a boundary law for entanglement
entropy [20,38].

In terms of τ operators, the effective MBL Hamiltonian
takes the following universal form:

Ĥ =
∑

i

hiτ
z
i +

∑
i,j

Jij τ
z
i τ z

j +
∑
i,j,k

Jijkτ
z
i τ z

j τ z
k + . . . . (1)

Here, hi describes the random field acting on the effective
spin i. A salient feature of this Hamiltonian is the absence
of any hopping terms, as it only depends on τ z operators
(and not on τ x,τ y). The spin-spin interaction terms arise
when interactions are present in the original Hamiltonian, and
would be absent in a noninteracting Anderson insulator. These
terms are expected to be random and to decay exponentially
with distance rij = |i − j |, with some characteristic length
scale ξ1:

Jij ∝ J0e
− rij

ξ1 , Jijk ∝ J0e
− max(rij ,rjk ,rik )

ξ1 , . . . , (2)

where J0 sets the interaction scale.
In the τ basis, eigenstates of the Hamiltonian (1) are simply

product states with τ z
i = ±1. In the physical basis, eigenstates

are entangled, but only slightly, and almost all of them obey
a boundary law for entropy [20,38]. This unusual property,
typically found in ground states of gapped systems, here occurs
in any excited state. In contrast, excited eigenstates of ergodic
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systems are far more entangled: their entanglement entropy
scales according to a volume law.

Despite the simple form of the Hamiltonian in the τ basis,
the MBL phase exhibits nontrivial dynamics when the system
is initially prepared in a superposition of eigenstates. Each
effective spin experiences an effective magnetic field in the
z direction that depends on the state of other spins in a
complicated way. Therefore, if the system is initially prepared
in a state where each effective spin is in a superposition state
of τ z

i = ±1, over time different spins will get entangled.
This entanglement is caused by the dephasing of the off-
diagonal elements of the reduced density matrix in the τ

basis [20,21,23].
The magnetic field experienced by the effective spin k can

be represented as follows:

Hk({τ ′}) = hk + H 1
k ({τ ′}) + H 2

k ({τ ′}) + . . . , (3)

where {τ ′} refers to the configuration of all spins other than
kth. Hl

k denotes the magnetic field arising from interactions
with the spins, which are within the distance |i − k| � l from
spin k, e.g., the first two terms are explicitly given by

H 1
k = Jk,k+1τ

z
k+1 + Jk,k−1τ

z
k−1 + Jk,k−1,k+1τ

z
k−1τ

z
k+1 (4)

and

H 2
k = Jk,k+2τ

z
k+2 + Jk,k−2τ

z
k−2

+
∑
|σ |�2

′ ∑
2�σ ′>σ

′
Jk,k+σ,k+σ ′τ z

k+σ τ z
k+σ ′

+
∑
|σ |�2

′ ∑
2�σ ′>σ

′ ∑
2�σ ′′>σ ′

′
Jk,k+σ,k+σ ′,k+σ ′′τ z

k+σ τ z
k+σ ′τ

z
k+σ ′′

+ Jk−2,k−1,k,k+1,k+2τ
z
k−2τ

z
k−1τ

z
k+1τ

z
k+2, (5)

where the prime in
∑′ indicates that the summations exclude

zero (σ �= 0, etc.).
It is believed that the effective fields Hl

k decay exponentially
with distance l:

Hl
k ∼ J0e

−l/ξ , (6)

with a characteristic scale ξ that generally differs from the
length scale ξ1 that controls the decay of interactions in Eq. (2).
In principle, the two length scales ξ,ξ1 can be related using the
form of Hl

k ; however, for the sake of simplicity, we will treat
them as phenomenological parameters of the theory.

III. MICROSCOPIC MODEL

Now we briefly introduce a microscopic model of the MBL
phase, which will be studied numerically in Sec. V B. Namely,
we consider a 1D XXZ spin chain in a random magnetic field,
which is believed to exhibit the MBL phase at sufficiently
strong disorder [18]. The Hamiltonian is given by

ĤXXZ = J⊥
∑
〈ij〉

(
sx
i sx

j + s
y

i s
y

j

) + Jz

∑
〈ij〉

sz
i s

z
j +

∑
i

wis
z
i ,

(7)
where sα = 1

2σα is the spin-1/2 operator expressed via Pauli
matrices. The disorder enters this Hamiltonian via random
field wi , which we take to be uniformly distributed in the
interval [−W ; W ]. Interaction and hopping terms extend over

the nearest neighbor spins only. For open boundary conditions
and Jz = 0, the model (7) is equivalent to free fermions moving
in a disorder potential, via Jordan-Wigner transformation. In
this limit, the system is in the Anderson-localized phase for any
W > 0. When Jz �= 0, the system is believed to exhibit both
MBL and delocalized phases as a function of W/J⊥ [18]. In
particular, for J⊥ = Jz = 1, the phase boundary was identified
to be located at W ∗ ≈ 3.5 ± 1.0.

We emphasize that the Hamiltonian (7) in the MBL phase
can be brought into the form (1) by an appropriate unitary
transformation. However, the effective spins operators have
a complicated and nonuniversal, albeit local, relation to the
physical spin operators. In what follows, we will study local
observables for both effective and physical spin operators
analytically, and find that their dynamics is similar. Later,
we use the model (7) to compute behavior of physical spin
observables numerically, providing additional tests of analytic
results.

IV. GLOBAL QUENCH WITHIN THE EFFECTIVE MODEL

Now we proceed to discuss global quantum quenches in
the MBL phase. We will assume that the system is initially
prepared in a product state in the physical basis, or more
generally, in a weakly entangled state. Such states, in general,
are superpositions of different eigenstates. At t > 0, the system
is evolved with the MBL Hamiltonian (1). Later on, we
will also consider the case when the system was initially
in the ground state of some other Hamiltonian, and then its
Hamiltonian was abruptly switched to Ĥ at t = 0. Throughout
the analysis, we assume that the system is isolated and
decoupled from an external bath, or that the time scale of
interaction with the bath is longer than the observation time.

In this section, we start by considering a particularly
simple initial state in which effective (rather than physical)
spins are prepared in a product state. We assume that each
effective spin initially points in some direction on the Bloch
sphere. In practice, such a state is hard to prepare, as the
relation of effective spins to physical degrees of freedom
is disorder-realization-dependent and a priori not known.
However, this example captures most of the key features of
the quench dynamics in the MBL phase and has the advantage
of being analytically tractable. Below we start by considering
expectation values of a single-spin operator (Sec. IV A), and
later generalize to multi-spin operators (Sec. IV B).

A. Single-spin observables

The initial state is given by

|�(t = 0)〉 = ⊗L
i=1(Ai↑| ↑〉i + Ai↓| ↓〉i), (8)

where | ↑ (↓)〉i denotes τ z
i = ±1 states, and Ai↑,Ai↓ are com-

plex numbers satisfying a normalization condition |Ai↑|2 +
|Ai↓|2 = 1. Under unitary evolution with the Hamiltonian (1),
different eigenstates entering the wave function (8) acquire
different phases. The wave function at time t is given by

|�(t)〉 =
∑
{τ }

(
L∏

i=1

Aiτi

)
e−iE{τ }t |{τ }〉, (9)
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where |{τ }〉 is an eigenstate of the Hamiltonian (1), with a
given configuration of effective spins, e.g., {τ } =↑↓↓↑ . . . ↑,
and E{τ } is the energy of such a state.

We consider single-spin observables for spin k, described
by the operators τα

k (t), α = x,y,z. The diagonal elements of
the reduced density matrix for spin k are time-independent
because τ z

k is an integral of motion:

ρ↑↑(t) = |Ak↑|2, ρ↓↓(t) = |Ak↓|2, (10)

while the off-diagonal element of the density matrix reads

ρ↑↓(t) = ρ∗
↓↑(t) = Ak↑A∗

k↓
∑
{τ ′}

P{τ ′}ei(E↑,{τ ′ }−E↓,{τ ′ })t , (11)

where {τ ′} refers to all configurations of L − 1 spins with the
k-th spin excluded. E↑(↓),{τ ′} is the energy of a state in which
τ z
k =↑ (↓), and the remaining spins are in a state {τ ′}. P{τ ′} is

the probability of finding such a state, which is conserved
during the unitary evolution. For the initial state (8), this
probability is given by P{τ ′} = ∏

i �=k |Aiτi
|2.

Using Hamiltonian (1), we rewrite Eq. (11) as

ρ↑↓(t) = Ak↑A∗
k↓

∑
{τ ′}

P{τ ′}e2iHk ({τ ′})t , (12)

where we used Hk({τ ′})—the effective magnetic field experi-
enced by the spin k when the remaining spins are in a state
|{τ ′}〉—defined in Eq. (3).

In the absence of interactions, the effective magnetic field
experienced by the kth spin does not depend on the state of
other spins, therefore, Hk = hk and ρ↑↓(t) = Ak↑A∗

k↓e2ihk t .
This describes precession of the spin k, without any dephasing.
In this case, single-spin observables keep oscillating in time,
and no steady state is reached, which is the dynamical signature
of the Anderson insulator.

In contrast, in the MBL phase, the presence of interactions
makes Hk({τ ′}) dependent on the configuration {τ ′}. Different
configurations of the surrounding spins correspond to a
different magnetic field experienced by the kth spin, leading
to the dephasing and suppression of the off-diagonal element
ρ↑↓ of the reduced density matrix. To estimate ρ↑↓(t), we
use the hierarchical structure of the effective magnetic field,
which follows from Eq. (3). In the limit of short localization
length, each successive term in the sum in Eq. (3) is typically
much smaller than the previous one: |Hl

k| � |Hl+1
k | � . . . .

This leads to the separation of time scales: at time t , such that

1/H l
k � t � 1/H l+1

k , (13)

the magnetic field is effectively independent of the state of
spins for which |i − k| > l, but configurations which differ in
one or more spins for which |j − k| � l pick up a phase dif-
ference much greater than 2π . Physically, this means that spin
k gets entangled with spins k − l, . . . ,k − 1,k + 1, . . . k + l,
i.e., those within a distance l. This implies that at time t the
off-diagonal element of the reduced density matrix, Eq. (11),
consists of N (t) = 22l terms with random phases, i.e., the
number of configurations of spins for which |i − k| � l. The
value of this sum depends on the probabilities P{τ ′}, which are
determined by the amplitudes Aiτi

.
Assuming that all P{τ ′} are approximately equal (e.g., all

probabilities P{τ ′} are equal when |Aiτi
| = 1√

2
, that is, when

all the effective spins are initially polarized in xy plane), the
magnitude of ρ↑↓(t) can be estimated as follows:

|ρ↑↓(t)| ∼ |Ak↑A∗
k↓|√

N (t)
. (14)

Using N (t) = 22l and the relation l ∼ ξ ln (J0t), which follows
from Eqs. (6) and (13), we obtain

|ρ↑↓(t)| ∼ |Ak↑A∗
k↓|

(tJ0)a
, a = ξ ln 2. (15)

Thus the off-diagonal element of the reduced density matrix
decays as a power-law in time, with an exponent set by ξ .
Note that the factor ln 2 multiplying ξ is nonuniversal. It
depends on the details of the initial state, and equals ln 2 only
for the states for which probabilities of all configurations are
(approximately) equal.

For general initial states, the behavior of ρ↑↓(t) is de-
termined by the distribution of the coefficients Aiτi

and
the corresponding density of the diagonal Renyi entropy, as
we now show. To establish this connection, note that the
time-averaged value of the squared off-diagonal element of
the reduced density matrix at time t is given by

〈ρ2
↑↓(t)〉 = |Ak↑A∗

k↓|2
∑

{τ ′
l },|i−k|�l

P 2
{τ ′

l }, (16)

where the sum is taken over configurations of spins {τ ′
l } such

that 1 � |i − k| � l. In order to obtain the above equation,
we assumed that the phases generated due to interactions with
spins |i − k| � l are all random. The expression on the right-
hand side of the above equation can be related to the second
diagonal Renyi entropy S2 of the region of size 2l, obtained
by expanding the initial state in the basis of eigenstates, as
follows: ∑

{τ ′
l }

P 2
{τ ′

l } = exp(−S2(2l)), (17)

where {τ ′
l } denotes the configurations of spins situated within

distance l from spin k. Noting that S(2l) is extensive and
therefore S(2l) = C 2l with a coefficient dependent on the
initial state, and using l ∼ ξ ln(J0t), we obtain

|ρ↑↓(t)| ∼ |Ak↑A∗
k↓|

(tJ0)b
, b = ξC. (18)

For the case of the maximum possible diagonal Renyi entropy,
C = ln 2, and this expression reduces to Eq. (15), therefore b

is bounded from above by a, b � a = ξ ln 2.
The results (10) and (18) for the components of the density

matrix allow us to understand the time evolution of the single-
spin observables: τ z

k is conserved, and its expectation value
does not change, while τ x

k ,τ
y

k show a power-law decay in time
to zero: 〈

τ z
k (t)

〉 = 〈
τ z
k (0)

〉
, (19)

∣∣〈τ x,y

k (t)
〉∣∣ ∝ 1

tb
, t � 1/J0. (20)

Observables τ
x,y

k show fast nonuniversal oscillations, while the
amplitude of the oscillations decays as a power law in time.
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Below we will argue that this behavior holds generally and is
not specific to the initial product states of effective spins.

B. Multispin observables

Here we analyze time evolution of observables that involve
two or more effective spins. We will show that, similar to
the case of single-spin operators, such observables show
power-law decay in time; however, there are different regimes
characterized by different power-law exponents. We will use
the results of this section to analyze the physical initial states
in the next section.

In order to understand the behavior of expectation values
of multi-spin operators, it is useful to go from the Schrödinger
to the Heisenberg representation, where operators, rather than
wave functions, depend on time. Using the simple form of the
effective Hamiltonian, we first obtain the time-dependent form
of the single-spin operators:

τ z
k (t) = τ z

k , (21a)

τ x
k (t) = cos(2Ĥkt)τ

x
k − sin(2Ĥkt)τ

y

k , (21b)

τ
y

k (t) = cos(2Ĥkt)τ
y

k + sin(2Ĥkt)τ
x
k , (21c)

where Ĥk is the magnetic field experienced by the spin k [see
Eq. (3)], which is an operator itself, although diagonal in the
basis of effective spins.

We note that using the expression for τα
k (t) in the Heisen-

berg representation, Eq. (21), one can re-derive the above
answers for 〈τ x,y,z

k (t)〉 [Eqs. (19) and (20)]. Obtaining the
expectation values of multi-spin operators is also straightfor-
ward. It is sufficient to understand the expectation value of an
operator that is a product of several τα

i operators:

T̂
{α}
{i} = T̂

α1α2···αn

i1i2...in
= τ

α1
i1

τ
α2
i2

· · · ταn

in
, (22)

where αi = x,y,z. If αi = z for all i1,i2, . . . ,in, from Eq. (21a)
it follows that the expectation value of any string of τ z at
different sites remains constant with time,〈

T̂ zz...z
i1i2...in

(t)
〉 = 〈

T̂ zz...z
i1i2...in

(0)
〉
. (23)

On the other hand, the presence of τ x or τ y operators in Eq. (22)
induces oscillations and decay in time as remote spins become
entangled.

We illustrate this by analyzing the expectation value for the
two-spin operator, T̂ xx

jk = τ x
j τ x

k . Using Eq. (21), we obtain

〈
T xx

jk (t)
〉 =

∑
τ ′′

P{τ ′′}
∑
τ z
j ,τ z

k

A∗
j τ̄ z

j
A∗

kτ̄ z
k
Ajτz

j
Akτz

k

× exp
[−i(Eτz

j τ z
k {τ ′′} − Eτ̄z

j τ̄ z
k {τ ′′})t

]
, (24)

where {τ ′′} refers to the configuration of all spins excluding
j th and kth ones, and τ̄ z

k denotes an opposite spin from τ z
k (if

τ z
k =↑, then τ̄ z

k =↓). The probability P{τ ′′} for the specific
initial state considered here is P{τ ′′} = ∏

i �=j,k |Aiτi
|2. The

phase factor can be expressed via effective magnetic field at
sites j and k,

Eτz
j τ z

k {τ ′′} − Eτ̄z
j τ̄ z

k {τ ′′} = 2Hj

(
τ z
k {τ ′′})τ z

j + 2Hk

(
τ̄ z
j {τ ′′})τ z

k .

(25)

Note that terms proportional to τ z
j τ z

k drop off from above equa-
tion. Indeed, operator τ x

j τ x
k flips both spins simultaneously,

and the terms proportional to τ z
j τ z

k are the same in Eτz
j τ z

k {τ ′′}
and Eτ̄z

j τ̄ z
k {τ ′′}.

The expectation value in Eq. (24) is a sum of many
oscillating terms, similar to the case of single-spin observables.
However, the behavior of this function at time t depends on
whether at that time the spins j,k have become entangled
or not. At times such that t � J−1

0 e|j−k|/2ξ , the spins j

and k evolve independently; in this regime, the sum in the
right-hand side of Eq. (24) can be represented a product of
two sums, which are equal to 〈τ x

j (t)〉 and 〈τ x
k (t)〉, respectively.

Using the results from the previous section, we obtain that
〈τ x

j (t)τ x
k (t)〉 ∝ 1/t2b. At long times, t � J−1

0 e|j−k|/ξ , when
spins j and k are entangled, the sum in Eq. (24) contains 22l

independent random terms, where l ∼ ξ ln(J0t). Then, using
an argument similar to the one from Sec. IV A, we obtain an
estimate 〈T xx

jk (t)〉 ∝ 1/tb. This behavior can be summarized
as follows:

〈
T xx

jk (t)
〉 ∝ 1

t2b
, t � J−1

0 e|j−k|/ξ (26a)

〈
T xx

jk (t)
〉 ∝ 1

tb
, t � J−1

0 e|j−k|/ξ . (26b)

Combining results for two- and single-spin correlators,
Eqs. (20) and (26), we can understand the behavior of the
irreducible correlation function, defined as the difference〈

τα
j τ

β

k

〉
c
= 〈

τα
j τ

β

k

〉 − 〈
τα
j

〉〈
τ

β

k

〉
. (27)

At short times, t � J−1
0 e|j−k|/2ξ , the irreducible correlation

function 〈τ x
j (t)τ x

k (t)〉c is zero, and it saturates according to a
power-law at long times, once the correlations between spins
j and k have developed.

These considerations can be generalized for products of
three and more spin operators. If the string T̂

α1α2···αn

i1i2···in contains
at least one τ x or τ y operator, at sufficiently long times (such
that t � J−1

0 e−|s|/ξ , where s = max(|ip − iq |) is the support
of the operator T̂i1i2···in) the corresponding expectation value
decays as a power law with exponent b:

〈
T̂

α1α2···αn

i1i2···in (t)
〉 ∝ 1

tb
, if ∃αi ∈ {x,y}. (28)

At shorter times, this function can decay with a different
power-law, similar to the case of 〈T xx

jk (t)〉. We will use the
result Eq. (28) in the following section to understand the
behavior of physical operators.

C. Strongly entangled initial states

Before we address physical observables, let us briefly com-
ment on the extension of previous results to more complicated
initial states. In particular, it is interesting to consider a quench
from the initial state that is strongly entangled, i.e., violates
the boundary-law. Experimentally such initial states can be
realized, for example, by abruptly changing disorder strength
in the model (7), thus tuning the system from the delocalized
into the MBL phase. Returning to the general result for ρ↑↓(t),
Eq. (12), we see that strongly entangled initial states will
result in a more complicated structure of probability P{τ ′}.
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However, provided there is an extensive entropy density [that
is, the number of terms contributing to sum in Eq. (12) grows
exponentially with the system size], logarithmic spreading of
entanglement results in a slow power-law decay of observables
to their long-time values.

V. GLOBAL QUENCH: PHYSICAL OBSERVABLES

Now we consider physical spin observables, and argue
that their behavior is similar to the effective spin operators
considered above: the average values reach “equilibrium”
(but nonthermal) values at long times, which depend on the
initial state. The fluctuations around these values decay in a
power-law fashion as a function time. Also, we use numerical
simulations of the random-field XXZ spin chain to support
our analytic arguments.

A. Analytic considerations

We assume that the system is prepared in some initial state
|�0〉 at t = 0, which can be expanded in the basis of eigenstates
as follows:

|�0〉 =
∑
{τ }

A{τ }|{τ }〉,

where {τ } = τ z
1 τ z

2 · · · τ z
L, τ z

i =↑ , ↓ denotes 2L eigenstates of
our system. We focus on the experimentally relevant class
of initial states which are product states of physical spins.
However, we expect our analysis to apply to a more general
class of initial states, in particular those obeying the boundary-
law entanglement.

We will be interested in the time evolution of a local
observable described by the local operator Ô acting on several
physical spins situated near site k. Such an operator can be
expanded in the basis of the effective spin operators (22):

Ô =
∑

{i},{α}
B

{α}
{i} T̂

{α}
{i} , (29)

where {i} runs over groups of effective spins, and {α} denotes
various combinations of spin projections for a given choice of
i. For example, for the case Ô = σ z

k ,

σ z
k =

∑
i1

Bz
i1
τ z
i1

+
∑

i1,i2,σ=x,y,z

Bσσ
i1i2

τσ
i1
τσ
i2

+ . . . , (30)

where ellipses denote three- and higher-order spin terms. In
writing the above equation, we assumed that τ operators are
chosen such that σ z

k commutes with the total τ z operator (for a
model with conserved total sz such a choice is always possible),
and therefore terms such as τ

x,y

i1
are not allowed on the right-

hand side of Eq. (30).
Due to the locality of the operator Ô and the quasilocality

of the unitary transformation that relates physical and effective
spins, coefficients B

{α}
{i} decay exponentially for larger groups

of effective spins. Presumably,

B
{α}
{i} ∝ exp(−l/χ ),

where l = max(|ip − k|) is the range of the operator T̂
{α}
{i} ,

and χ is set by the properties of the quasilocal unitary
transformation that diagonalizes the MBL Hamiltonian.

In order to understand the time evolution of the expectation
value of operators T

{α}
{i} for initial product state |�0〉, we

note that the latter is a superposition of (exponentially) many
eigenstates {τ }. Phases Hkt become random at long times for
wave function components with different {τ ′}, which leads to
the suppression of the averages of “off-diagonal” operators
T

{α}
{k} (the ones where at least one αi = x,y). An argument

similar to the one described in the previous section then shows
that each 〈�0|T {α}

{k} |�0〉 in sum (29) decays as a power-law
function of time.

Turning to physical observables, we note that the operator
Ô can be represented as a sum of its part that commutes with
the Hamiltonian, Ō, and the remaining part. The commuting
part is obtained by taking terms in the expansion (29) in which
all αi = z, and the remainder is given by the sum of terms
where at least one index αi = x,y. The conserved part Ô is a
local integral of motion (see Ref. [41] for a detailed study of
such operators). It does not change under time evolution, and
retains the memory of the initial state.

The “off-diagonal” part, being a sum of a finite number of
“off-diagonal” operators T

{α}
{i} , exhibits oscillations with a typi-

cal magnitude that decays as a power law in time at sufficiently
long times [see Eq. (28)]. This can be summarized as

〈Ô(t)〉 → 〈Ō〉, t → ∞, (31a)

(〈Ô(t)〉 − 〈Ō〉)2 ∼ 1

t2b
, t � 1/J0, (31b)

where expectation value is taken with respect to the state
|�0〉.

Let us comment on the applicability of the above results,
Eq. (31). In Sec. IV C, we argued that power-law decay is not
limited to initial product states, but rather holds for any initial
states with finite entropy density, including highly entangled
initial states. Thus we conclude that this behavior applies to
any local observable in the MBL phase unless the initial state
is fine tuned and is very close to an eigenstate. The power-
law exponent b is proportional to ξ , with a prefactor that
generally depends on the way the initial state is prepared.
This prefactor is set by the second diagonal Renyi entropy of
the initial state in the effective spin basis. Thus, generally, b �
a = ξ ln 2, as ln 2 is the maximum possible entropy density.
This inequality becomes an equality if |�0〉 is an equal-weight
superposition of all the eigenstates, as was the case for the
initial state considered in Sec. IV.

As we argued above, slow, power-law-like decay also
holds for longer-range observables, e.g., correlation function
between two distant sites j and k, 〈σx

j σ x
k 〉. However, the

exponent of the decay in Eq. (26) is nonuniversal, as it changes
on the time scale over which correlations between spins j and
k develop. In principle, all physical operators, according to
Eq. (29), contain terms that are long ranged but exponentially
suppressed. However, as we demonstrate below numerically,
these terms do not matter for the simplest local operators,
which exhibit clear power-law behavior.

B. Numerical tests

To test our analytic results for the behavior of local
observables and correlation functions, here we study the
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quench dynamics in the MBL phase numerically. We focus
on the XXZ spin chain, described in detail in Sec. III, as a
model for the MBL phase.

We employ exact diagonalization to study time evolution
and local observables of the Hamiltonian (7). We consider spin
chains of size L = 10 and 12 with open boundary conditions,
without restricting to a particular spin sector of the Hilbert
space. First, we prepare the initial state as a product state,
where each physical spin, σi , i = 1, . . . ,L points in a random
direction on the Bloch sphere. Dynamics of local spin operators
on the very first site, 〈σ z

1 〉, 〈σx
1 〉, along with correlation function

〈σx
1 σx

L〉c for a single such initial state is shown in Fig. 1. For
local observables, we see fast oscillations on the scale set
by J⊥ and local magnetic field wi . While the amplitude of
these oscillations indeed decays, clear revivals of the signal
are present. A notable difference between σx and σ z operators
is that the latter oscillates around a nonzero value [Fig. 1(a)],
indicating that this operator has a nonvanishing overlap with
the conserved quantity τ z

1 .
The irreducible correlation function (27) between physical

spins at the opposite ends of the chain, 〈σx
1 σx

L〉c [Fig. 1(c)],
behaves differently from local observables. It is strictly zero
at short times, since we start from a product state of physical
spins. At later times, the correlation function becomes

FIG. 1. (Color online) Expectation values of local operators σx
1 ,

σ z
1 and the correlation function 〈σx

1 σ x
L〉c for an initial state where each

spin points in a random direction. (a) and (b) show the expectation
value of local operators σ z

1 and σ x
1 . The signal is oscillating at many

different frequencies. While the envelope indeed decays, one can see
multiple revivals of the signal. The irreducible spin-spin correlation
function, (c), is zero at small times, with correlations developing at
larger times. No disorder or ensemble averaging were performed.
Interactions Jz = 1, disorder W = 5, system size is L = 12.

FIG. 2. (Color online) Disorder-averaged fluctuations of local
operators σ z

1 and σ x
1 around their mean values. The fluctuations decay

in a power-law fashion with the same exponent that does not depend
on system size. However, the saturation value decreases with system
size. The initial states are chosen from an ensemble of states for
which each spin initially points in a random direction. Interactions
Jz = 1, disorder W = 5, system size is L = 10 and 12. Averaging
was performed over 4000 configurations.

nonzero and starts to oscillate. Note that 〈σx
1 σx

L〉c deviates
from zero on a time scale that is relatively short compared to
the relaxation time of local observables. This is related to the
presence of exponential tails in the relation between physical
and effective spins.

In order to reveal the power-law decay of local observables
and the logarithmic propagation of correlations, we need to
suppress the fast oscillations in the signal illustrated in Fig. 1.
The simplest route to this is to consider the absolute value
or square of the correlation function, and average it over
disorder realizations. Figure 2 shows results for the square
of the spin expectation value, where averaging is performed
over random disorder realizations and random spin directions
in the initial state. Note that while we consider the square
of spin σx expectation value, 〈〈σx

1 〉2〉, we subtract off the
long-time average of the σ z correlator, 〈(〈σ z

1 〉 − 〈σ̄ z
1 〉)2〉, to

reveal how 〈σ z〉 relaxes to its saturation value at long times.
We see from Fig. 2 that both averages decay in a power-law
fashion with time, with approximately equal exponents. We
note that the system size and explicit form of the operator (σx

or σ z) controls the saturation value and time (compare solid
and dashed line in Fig. 2), but does not influence the exponent
of decay [43]. We also test the dependence of decay on the
interactions strength (not shown) and confirm that at weak
interactions, signals collapse as a function of Jzt .

We furthermore test the power-law decay for a different
class of initial states that are not product states. Figure 3
displays the dynamics of local operators when the system is
initially prepared in the ground state of the Hamiltonian (7)
with W = 0.05 (delocalized phase), and at t = 0 disorder is
abruptly changed to W = 5. Note that saturation sets in much
faster compared to the case of initial product states, Fig. 2,
despite the interaction and disorder strength being the same.

Finally, we compute the averaged absolute value of the
irreducible correlation function 〈|〈σx

1 σx
L〉c|〉 in Fig. 4. The

slope of the growth is not influenced by the distance between
measured spins. Moreover, the increase in the distance between
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FIG. 3. (Color online) Disorder-averaged fluctuations of local
operators σ z

1 and σ x
1 σ x

2 around their mean values when the initial
state is the ground state of the XXZ chain with vanishing disorder
W = 0.05. Interactions Jz = 1, disorder W = 5, system size is
L = 10 and 12. Averaging was performed over 4000 configurations.

spins causes an exponential delay in the development of
correlations. For the shortest distance between spins, one
observes ballistic development of correlations at short times,
followed by a slow growth [topmost (red) curve in Fig. 4]. Note
that although the irreducible correlation function also displays
slow dynamics, it cannot be fitted with a simple power law.
This reflects the fact that the decay of two-spin observables is
described by power laws with different exponents at short and
long times, as discussed above.

VI. LOCAL QUENCH

In this section, we propose an alternative setup for probing
the characteristic dynamics of the MBL phase, which we refer
to as a local quench. We assume that an isolated system as a
whole is initially prepared in a thermal state (e.g., because
it was brought in contact with an external bath and then
disconnected from it). We study a setup in which some test spin
is repeatedly prepared in the same quantum state, and then its
time evolution is probed. If the test spin does not interact with
the remaining degrees of freedom, it will generically exhibit

FIG. 4. (Color online) Disorder-averaged expectation value of
the irreducible correlation function 〈σx

j σ x
k 〉c for different distances

d = |j − k| between sites j and k for a chain of L = 10 spins.
The growth of correlation is exponentially sensitive to the distance
between spins, however it has the same slope. The initial states are
chosen from an ensemble of states for which each spin initially
points in a random direction. Interactions Jz = 1, disorder W = 9.
Averaging was performed over 4000 configurations.

nondecaying oscillations. However, residual interactions with
an MBL system (which is in a mixed state) lead to dephasing
and power-law decay of oscillations, similar to the case of the
global quench studied above.

Consider first a simplified situation when our test spin is an
effective spin (rather than physical spin), and it is prepared in
the state Ak↑| ↑〉 + Ak↓| ↓〉 at time t = 0, while the remaining
spins are in a mixed state, with the probability of state {τ ′}
being P{τ ′}. The time evolution of the reduced density matrix
of spin k is given by Eqs. (10) and (11), which we obtained
for the case of a global quench. The physical observables
therefore behave as above, with τ z

k being conserved during
evolution, and τ

x,y

k displaying power-law decay to zero at long
times. The dephasing responsible for the power-law decay of
τ

x,y

k in this case arises because the system is in a mixed state,
and spin k precesses with different frequency depending on
the state of the remaining spins.

In a realistic experiment, one would manipulate physical,
rather than effective spins, and prepare spin k in some
initial state Ak↑| ↑〉 + Ak↓| ↓〉. The physical spin k is not a
precise integral of motion, and therefore its σ z

k projection
is not conserved. However, the operator σ z

k is expected to
have a nonzero overlap with the integral of motion τ z

k (see,
e.g., Ref. [30]), thus, σ z

k will typically remain finite at long
times, if for the initial state 〈σ z

k 〉 �= 0. Further, applying the
arguments of the previous Section, we conclude that σ z

k , as
well as σ

x,y

k approach their long-time values in a power-law
fashion. Thus a local quench provides an alternative way of
experimentally probing dephasing dynamics that characterizes
the MBL phase.

The situation changes if the MBL system is prepared in
an eigenstate, rather than in a mixed state. In this case,
the dephasing is suppressed, and the test spin will show
nondecaying oscillations with a frequency that depends on
the state of remaining spins.

Although it is difficult to prepare the whole MBL system
in an eigenstate, it should be possible to control the state of
several spins around the test one. As we now argue, this ability
can potentially be used to suppress dephasing and create long-
lived quantum states of the test spin. Let us assume that the
effective spins distance r � ξ away from the test spin can be
prepared in states | ↑〉 or | ↓〉. We will call this region a “buffer
region.” In a random-field XXZ model, this can be achieved
by polarizing all spins in the buffer region along the same
(up or down) direction. Being in an eigenstate, these spins
cannot get entangled and dephase spin k—their only effect is
to change the precession frequency of spin k. Therefore the
test spin k will only dephase and lose coherence after time
of order tdeph ∼ J−1

0 exp(−r/ξ ), when the interactions with
the spins outside “buffer” become important. This provides a
way of protecting the quantum states of the test spin, which
complements spin-echo techniques [30].

VII. CONCLUSIONS

In conclusion, we studied the dynamics in the MBL phase
following a quantum quench. We demonstrated that local
observables reach stationary values at long times as a result of
slow dephasing between remote conserved degrees of freedom,
characteristic of the MBL phase [20,21,23,24]. The steady
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state is highly nonthermal, and the memory of the initial state
is contained in the values of local integrals of motion. For the
local operators that represent the density of some extensive
conserved quantity (such as the z-axis spin projection, or
energy density), the long-time value is generally nonzero and is
correlated with the initial value. More generally, this holds for
local operators that have nonzero overlap with a local integral
of motion in the MBL phase. We note that the existence
of a stationary state distinguishes the MBL phase from a
noninteracting Anderson insulator, where local observables
show nondecaying oscillations following a quench.

We argued that the time evolution of local observables, and
their approach to the stationary values is also universal—the
fluctuations around the stationary values decay according to
a power law in time. The exponent is set by the localization
length and the entropy of the initial state. The power-law decay
of local observables stems from the same mechanism that
underlies the logarithmic in time growth of entanglement in
the MBL phase [20,21]; however, it has the advantage of being
experimentally measurable.

Further, we argued that an alternative probe of the slow
spreading of information in the MBL phase is given by the
correlation functions between remote degrees of freedom: the
correlations start developing only at times which are expo-
nential in the separation between those degrees of freedom.
This is in contrast with ballistic spreading of correlations in
ergodic or integrable systems, and is described by the so-called
zero-velocity Lieb Robinson bound [44,45].

Altogether, the properties described above comprise a new
regime of dynamics that arises in the MBL phase. To better
understand the reasons behind universal dynamics of MBL
systems, it is instructive to contrast them with ergodic and
integrable cases. Ergodic systems have a few global conserved
quantities, e.g., energy and total spin, and reach an equilibrium
thermal state at long times, with properties determined only
by the global conserved quantities. Local observables typically
approach their thermal values in an exponential fashion, except
for local densities of the globally conserved quantities, which
propagate diffusively and show power-law relaxation.

Integrable systems are more “constrained” compared to
the ergodic ones, as they have an extensive number of
conservation laws. These conserved quantities are similar to
the conventional integrals of motion, like energy, in what they
are approximately additive over the volume of the system.
Additivity of integrals of motion [1,22] allows to describe
the stationary state of integrable systems in terms of the
generalized Gibbs ensemble [10–14]. Approach to equilibrium

therefore requires all integrals of motion to attain their average
values throughout the volume, as well as dephase relative
to each other. MBL phase can be thought of as an even
more constrained version of integrable systems, as integrals of
motion in the MBL phase are strictly local. Therefore values of
the integrals of motion do not change during equilibration, and
dynamics is limited to dephasing. It is this severe restriction
on dynamics in the MBL phase that gives rise to its universal
properties.

Our article complements the related works [30,32,46–48],
which discuss dynamical experimental signatures of the
MBL phase. The modified spin-echo protocol, introduced in
Ref. [30], probes the dephasing of a given spin due to its
interaction with a specific remote region. An alternative route,
suggested in Ref. [32], is to probe the dephasing in the MBL
phase by measuring the revivals in the magnetization of a
test qubit coupled to a long chain. The universal power-law
relaxation, identified in the present work, can be observed
in a natural setup involving a global or local quench, and is
also robust to thermal and disorder averaging, similar to the
modified spin-echo protocol [30]. It is worth mentioning that
spectral properties of the MBL phase, providing additional
experimental signatures, were considered in Refs. [47,48].

Finally, we note that the setup considered in this paper can
be realized in systems of cold atoms in optical lattices, where
both disorder and interactions can be controlled in a broad
range. For example, the behavior of local observables can
be studied in a disordered Bose-Hubbard or Fermi-Hubbard
model in one dimensional optical lattice, by preparing a
nonuniform initial state [33–35,49]. In the MBL phase, local
density modulation will remain finite at long times. Further,
MBL phase can be detected by the characteristic power-law
behavior of local observables, as well as by measuring the time
evolution of correlation functions. The light cone spreading of
correlations in the ergodic phase has been recently observed
experimentally for a one dimensional quantum gas [28]. In
closing, we note that it would be interesting to study quantum
quenches at and near the transition between MBL and ergodic
phase.
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[23] M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. Lett. 110,
260601 (2013).

[24] R. Vosk and E. Altman, Phys. Rev. Lett. 110, 067204 (2013).
[25] M. Znidaric, T. Prosen, and P. Prelovsek, Phys. Rev. B 77,

064426 (2008).
[26] J. H. Bardarson, F. Pollmann, and J. E. Moore, Phys. Rev. Lett.

109, 017202 (2012).
[27] E. H. Lieb and D. Robinson, Commun. Math. Phys. 28, 251

(1972).
[28] M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P. Schausz,

T. Fukuhara, C. Gross, I. Bloch, C. Kollath, and S. Kuhr, Nature
(London) 481, 484 (2012).

[29] H. Kim and D. A. Huse, Phys. Rev. Lett. 111, 127205 (2013).
[30] M. Serbyn, M. Knap, S. Gopalakrishnan, Z. Papić, N. Y. Yao,
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