99 research outputs found

    Advances in Cellular Therapy for the Treatment of Thyroid Cancer

    Get PDF
    Up to now, there are no curative therapies available for the subset of metastasized undifferentiated/anaplastic thyroid carcinomas. This review describes the possible use of immunocompetent cells which may help to restore the antitumor immune recognition for treating an existing tumor or preventing its recurrence. The most prominent experimental strategy is the use of dendritic cells (DCs) which are highly potent in presenting tumor antigens. Activated DCs subsequently migrate to draining lymph nodes where they present antigens to naïve lymphocytes and induce cytotoxic T cells (CTL). Alternatively to DC therapy, adoptive cell transfer may be performed by either using natural killer cells or ex vivo maturated CTLs. Within this review article we will focus on recent advances in the understanding of anti-tumor immune responses, for example, in thyroid carcinomas including the advances which have been made for the identification of potential tumor antigens in thyroid malignancies

    Bedeutung von DNA-Reparaturprozessen für die Zytostatika-Resistenz menschlicher Leukämie-Zellen

    Get PDF
    In dieser Arbeit wurde untersucht, welche Bedeutung DNA-Reparaturprozesse für die Empfindlichkeit humaner Tumorzellen gegenüber DNA-reaktiven Chemotherapeutika haben. Dazu wurden zunächst zwei Analyseverfahren etabliert, die eine quantitative Bestimmung der DNA-Reparaturkapazität auf der Ebene einzelner Zellen erlaubten: die immunzytochemische Analyse (ICA) zur Messung spezifischer DNA-Alkylierungsprodukte und die Einzelzell-Gelelektrophorese (?Comet Assay?) zur Bestimmung Reparatur-induzierter DNA-Strangbrüche. Funktionelle Messungen an humanen Normal-Lymphozyten, die ex vivo mit einem Standard-Alkylanz (EtNU) behandelt wurden, wiesen auf eine nur geringe inter-zelluläre aber eine große inter-individuelle Varianz der DNA-Reparaturkapazität hin. Der Beitrag spezifischer Mechanismen bei der Prozessierung von EtNU-induzierten DNA-Läsionen wurde durch die funktionelle Blockierung einzelner Reparaturwege ermittelt. Als Untersuchungsmodell einer malignen Erkrankung, bei der die Resistenzentwicklung gegen Alkylantien ein großes klinisches Problem darstellt, wurde die chronisch lymphatische Leukämie (CLL) gewählt. Homogene Populationen monoklonaler primärer Tumorzellen sind aus dem peripheren Blut von Patienten als CLL-Lymphozyten verfügbar. Auch hier fand sich, ähnlich wie bei normalen Lymphozyten, eine große Bandbreite individueller Reparaturkapazitäten, sowohl für initiale DNA-Alkylierungsschäden als auch für die Prozessierung von sekundären Strangbrüchen. Extreme individuelle Unterschiede im relativen Beitrag einzelner Reparaturwege weisen aber auf einen Verlust von stringenter Regulation in diesem komplexen Netzwerk bei Tumorzellen hin. Die Analyse dieser Daten mit parallel durchgeführten Zytotoxizitätsbestimmungen zeigte, daß die Reparatur-Halbwertszeiten für DNA-Läsionen bei CLL-Lymphozyten signifikant korrelieren mit deren in vitro-Chemosensitivität gegenüber einer Reihe von Alkylantien, die unterschiedliche Muster von DNA-Schäden induzieren. Dieser Befund legt einen kausalen Zusammenhang zwischen zellulärer Reparaturkapazität und dem Chemoresistenzprofil von Tumorzellen nahe

    Monocyte derived dendritic cells generated by IFN-α acquire mature dendritic and natural killer cell properties as shown by gene expression analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dendritic cell (DC) vaccines can induce antitumor immune responses in patients with malignant diseases, while the most suitable DC culture conditions have not been established yet. In this study we compared monocyte derived human DC from conventional cultures containing GM-CSF and IL-4/TNF-α (IL-4/TNF-DC) with DC generated by the novel protocol using GM-CSF and IFN-α (IFN-DC).</p> <p>Methods</p> <p>To characterise the molecular differences of both DC preparations, gene expression profiling was performed using Affymetrix microarrays. The data were conformed on a protein level by immunophenotyping, and functional tests for T cell stimulation, migration and cytolytic activity were performed.</p> <p>Results</p> <p>Both methods resulted in CD11c+ CD86+ HLA-DR+ cells with a typical DC morphology that could efficiently stimulate T cells. But gene expression profiling revealed two distinct DC populations.</p> <p>Whereas IL-4/TNF-DC showed a higher expression of genes envolved in phagocytosis IFN-DC had higher RNA levels for markers of DC maturity and migration to the lymph nodes like DCLAMP, CCR7 and CD49d. This different orientation of both DC populations was confined by a 2.3 fold greater migration in transwell experiments (p = 0.01).</p> <p>Most interestingly, IFN-DC also showed higher RNA levels for markers of NK cells such as TRAIL, granzymes, KLRs and other NK cell receptors. On a protein level, intracytoplasmatic TRAIL and granzyme B were observed in 90% of IFN-DC. This translated into a cytolytic activity against K562 cells with a median specific lysis of 26% at high effector cell numbers as determined by propidium iodide uptake, whereas IL-4/TNF-DC did not induce any tumor cell lysis (p = 0.006). Thus, IFN-DC combined characteristics of mature DC and natural killer cells.</p> <p>Conclusion</p> <p>Our results suggest that IFN-DC not only stimulate adaptive but also mediate innate antitumor immune responses. Therefore, IFN-DC should be evaluated in clinical vaccination trials. In particular, this could be relevant for patients with diseases responsive to a treatment with IFN-α such as Non-Hodgkin lymphoma or chronic myeloid leukemia.</p

    A case-control study of the HER2 Ile655Val polymorphism in relation to risk of invasive breast cancer

    Get PDF
    BACKGROUND: Overexpression of the HER2 proto-oncogene in human cancer cells has been associated with a poor prognosis, and survival improves with therapy targeting the HER2 gene. Animal studies and protein modeling suggest that the Ile655Val polymorphism located in the transmembrane domain of the HER2 protein might influence breast cancer development by altering the efficiency of homodimerization. METHODS: To investigate this genetic polymorphism, incident cases of invasive breast cancer (N = 1,094) and population controls of a similar age (N = 976) were interviewed during 2001 to 2003 regarding their risk factors for breast cancer. By using DNA collected from buccal samples mailed by the participants, the HER2 Ile655Val polymorphism was evaluated with the Applied Biosystems allelic discrimination assay. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were estimated by logistic regression adjusted for numerous breast cancer risk factors. Analysis was restricted to women with self-reported European descent. RESULTS: Prevalence of the Val/Val genotype was 5.6% in cases and 7.1% in controls. In comparison with the Ile/Ile genotype, the Ile/Val genotype was not significantly associated with breast cancer risk (OR 0.97, 95% CI 0.79 to 1.18), whereas the Val/Val genotype was associated with a reduced risk (OR 0.63, 95% CI 0.42 to 0.92). This inverse association seemed strongest in older women (OR 0.51, 95% CI 0.29 to 0.89 for women aged more than 55 years), women without a family history of breast cancer (OR 0.54, 95% CI 0.35 to 0.84), postmenopausal women with greater body mass index (OR 0.43, 95% CI 0.20 to 0.91 for a body mass index of 25.3 kg/m(2 )or more), and cases diagnosed with non-localized breast cancer (OR 0.49, 95% CI 0.26 to 0.90). CONCLUSION: Although results from our population-based case-control study show an inverse association between the HER2 Ile655Val polymorphism and risk of invasive breast cancer, most other studies of this single-nucleotide polymorphism suggest an overall null association. Any further study of this polymorphism should involve sample populations with complete risk factor information and sufficient power to evaluate gene-environment interactions between the HER2 polymorphism and factors such as age and family history of breast cancer

    c-erbB-2 is not a major factor in the development of colorectal cancer

    Get PDF
    We have investigated c-erbB-2 protein expression in a large cohort of well-characterized colorectal tumours, and in a subset of lymph node metastases. We have also evaluated a Val655Ile single nucleotide polymorphism, which is associated with an increased risk of breast cancer, in a subset of the colorectal cancer patients and in healthy control subjects. Immunohistochemical studies revealed that while 81.8% of tumours expressed c-erbB-2, in the majority of cases equivalent levels of c-erb-B2 were seen in adjacent normal mucosa. Colon tumours were significantly more likely to express c-erbB-2 than rectal tumours (P=0.015). Only 52.4% of the metastases displayed staining patterns concordant with their primary tumour, indicating that determination of c-erbB-2 protein in colorectal tumours cannot predict the status of lymph node metastases. PCR–RFLP analysis of the Val655Ile single nucleotide polymorphism demonstrated that allele frequencies were identical between colorectal cancer patients and a control group of Caucasian subjects (Ile=0.80 and Val=0.20 in each case), indicating that it is not related to the risk of developing colorectal cancer in this population. Furthermore, there was no relationship between c-erbB-2 protein expression and gene polymorphism (P=0.58). In terms of prognosis, no association was seen between either c-erbB-2 protein expression or the presence of the Val allele and patient survival (P>0.05 in each case), suggesting that c-erbB-2 is not a prognostic marker in colorectal cancer

    ErbB2, EphrinB1, Src Kinase and PTPN13 Signaling Complex Regulates MAP Kinase Signaling in Human Cancers

    Get PDF
    In non-cancerous cells, phosphorylated proteins exist transiently, becoming de-phosphorylated by specific phosphatases that terminate propagation of signaling pathways. In cancers, compromised phosphatase activity and/or expression occur and contribute to tumor phenotype. The non-receptor phosphatase, PTPN13, has recently been dubbed a putative tumor suppressor. It decreased expression in breast cancer correlates with decreased overall survival. Here we show that PTPN13 regulates a new signaling complex in breast cancer consisting of ErbB2, Src, and EphrinB1. To our knowledge, this signaling complex has not been previously described. Co-immunoprecipitation and localization studies demonstrate that EphrinB1, a PTPN13 substrate, interacts with ErbB2. In addition, the oncogenic V660E ErbB2 mutation enhances this interaction, while Src kinase mediates EphrinB1 phosphorylation and subsequent MAP Kinase signaling. Decreased PTPN13 function further enhances signaling. The association of oncogene kinases (ErbB2, Src), a signaling transmembrane ligand (EphrinB1) and a phosphatase tumor suppressor (PTPN13) suggest that EphrinB1 may be a relevant therapeutic target in breast cancers harboring ErbB2-activating mutations and decreased PTPN13 expression

    NK cells and type 1 innate lymphoid cells: partners in host defense

    Full text link
    Innate lymphoid cells (ILCs) are effectors and regulators of innate immunity and tissue modeling and repair. Researchers have identified subsets of ILCs with differing functional activities, capacities to produce cytokines and transcription factors required for development and function. Natural killer (NK) cells represent the prototypical member of the ILC family. Together with ILC1s, NK cells constitute group 1 ILCs, which are characterized by their capacity to produce interferon-γ and their functional dependence on the transcription factor T-bet. NK cells and ILC1s are developmentally distinct but share so many features that they are difficult to distinguish, particularly under conditions of infection and inflammation. Here we review current knowledge of NK cells and the various ILC1 subset
    corecore