134 research outputs found

    Le rempart du Cheslé à Bérisménil (comm. de La Roche)

    Get PDF
    info:eu-repo/semantics/publishe

    L\u27église Saint-Martin à Ougrée

    Get PDF

    Fouille d\u27un marchet à Bomal-sur-Ourthe

    Get PDF

    On some drawbacks and possible improvements of a lagrangian finite element approach for simulating incompressible flows

    Get PDF
    In this paper a Lagrangian finite element approach for the simulation of incompressible flows is presented, based on the so-called Particle Finite Element Method (PFEM). The spatial discretization and the definition of the boundary terms are discussed in detail with a specific focus on free-surface flows. Additionally, some problems that can arise from the use of such a method are pointed out. Some numerical examples are given and discussed in the last section of the paper

    Troisième campagne de fouilles dans la forteresse d\u27Etalle

    Get PDF

    Un four de potier de la renaissance à Weris - Morville

    Get PDF

    Addition of a finite element activation method in an existing thermomechanical finite element code to model additive manufacturing

    Full text link
    With the rise of Additive Manufacturing (AM) technologies in the industry, it becomes more and more important to have a good understanding of such processes. However, there is still a crucial lack of fundamental knowledge regarding AM. Hence, there is a high demand for the implementation of a model to accurately simulate an AM process. The complexity of such a simulation comes from multiple sources. Firstly, from the nature of the process. Indeed, it requires geometrically non-linear thermo-mechanical simulations. Secondly, the modeling of the material law is complex. Lastly, the geometry of the process imposes a very fine discretization (layers can be as small as a few μm). This creates models that are computationally costly. Moreover, the process requires altering the geometry of the model during the simulation to model the addition of matter, which is a computational challenge by itself. This work presents the addition of additive manufacturing in the fully implicit in-house Finite Element code “Metafor”, which considers large strains and includes thermo-mechanical simulations and crack propagation simulations. The focus of the work is to add an “additive manufacturing module” to the existing thermomechanical code Metafor. The implemented method to activate elements and to activate and deactivate boundary conditions during a simulation is adapted from the element deletion algorithm implemented in Metafor in the scope of crack propagation. Indeed, in crack propagation the deactivation of an element in a simulation was already possible, i.e. an element could be deactivated based on a certain crack propagation criterion. This algorithm is modified to allow the activation of elements based on a criterion (which can, in the case of AM, be the presence or not of the element in a certain “activation volume” modeling the moving laser). After implementing other AM specificities (heat source model, annealing temperature for alloys, etc), an effective thermomechanical simulation of Additive Manufacturing is obtained. The model is then compared against the literature, including numerical and experimental results from a thermal experimental calibration and a thermo-mechanical analysis of blown powder laser solid forming of Ti-6Al-4V. Temperature, deformation and stress fields are analyzed as well as the influence of different process parameters

    Element activation method and non-conformal dynamic remeshing strategy to model additive manufacturing

    Full text link
    peer reviewedModeling of Additive Manufacturing (AM) at the part scale involves non-linear thermo-mechanical simulations. Such a process also imposes a very fine discretization and requires altering the geometry of the models during the simulations to model the addition of matter, which is a computational challenge by itself. The first focus of this work is the addition of an additive manufacturing module in the fully implicit in-house Finite Element code Metafor [1] which is developed at the University of Liège. The implemented method to activate elements and to activate and deactivate boundary conditions during a simulation is adapted from the element deletion algorithm implemented in Metafor in the scope of crack propagation [2]. This algorithm is modified to allow the activation of elements based on a user-specified criterion (e.g. geometrical criterion, thermal criterion, etc.). The second objective of this work is to improve the efficiency of the AM simulations, in particular by using a dynamic remeshing strategy to reduce the computational cost of the simulations. This remeshing is done using non-conformal meshes, where hanging nodes are handled via the use of Lagrange multiplier constraints. The mesh data transfer used after remeshing is based on projection methods involving finite volumes [3]. The presented model is then compared against a 2D numerical simulation of Direct Energy Deposition of a High-Speed Steel thick deposit from the literature [4]
    corecore