9 research outputs found

    The proteasome controls ESCRT-III–mediated cell division in an archaeon

    Get PDF
    INTRODUCTION: Eukaryotes likely arose from a symbiotic partnership between an archaeal host and an alpha-proteobacterium, giving rise to the cell body and the mitochondria, respectively. Because of this, a number of proteins controlling key events in the eukaryotic cell division cycle have their origins in archaea. These include ESCRT-III proteins, which catalyze the final step of cytokinesis in many eukaryotes and in the archaeon Sulfolobus acidocaldarius. However, to date, no archaeon has been found that harbors homologs of cell cycle regulators, like cyclin-dependent kinases and cyclins, which order events in the cell cycle across all eukaryotes. Thus, it remains uncertain how key events in the archaeal cell cycle, including division, are regulated. RATIONALE: An exception to this is the 20S proteasome, which is conserved between archaea and eukaryotes and which regulates the eukaryotic cell cycle through the degradation of cyclins. To explore the function of the 20S proteasome in the archaeon S. acidocaldarius, we determined its structure by crystallography and carried out in vitro biochemical analyses of its activity with and without inhibition. The impact of proteasome inhibition on cell division and cell cycle progression was examined in vivo by flow cytometry and super-resolution microscopy. Following up with mass spectrometry, we identified proteins degraded by the proteasome during division. Finally, we used molecular dynamics simulations to model the mechanics of this process. RESULTS: Here, we present a structure of the 20S proteasome of S. acidocaldarius to a resolution of 3.7 Å, which we used to model its sensitivity to the eukaryotic inhibitor bortezomib. When this inhibitor was added to synchronous cultures, it was found to arrest cells mid-division, with a stable ESCRT-III division ring positioned at the cell center between the two separated and prereplicative nucleoids. Proteomics was then used to identify a single archaeal ESCRT-III homolog, CdvB, as a key target of the proteasome that must be degraded to enable division to proceed. Examining the localization patterns of CdvB and two other archaeal ESCRT-III homologs, CdvB1 and CdvB2, by flow cytometry and super-resolution microscopy revealed the sequence of events that leads to division. First, a CdvB ring is assembled. This CdvB ring then templates the assembly of the contractile ESCRT-III homologs, CdvB1 and CdvB2, to form a composite division ring. Cell division is then triggered by proteasome-mediated degradation of CdvB, which allows the CdvB1:CdvB2 copolymer to constrict, pulling the membrane with it. During constriction, the CdvB1:CdvB2 copolymer is disassembled, thus vacating the membrane neck to drive abscission, yielding two daughter cells with diffuse CdvB1 and CdvB2. CONCLUSION: This study reveals a role for the proteasome in driving structural changes in a composite ESCRT-III copolymer, enabling the stepwise assembly, disassembly, and contraction of an ESCRT-III–based division ring. Although it is not yet clear how proteasomal inhibition prevents S. acidocaldarius cells from resetting the cell cycle to initiate the next S phase, these data strengthen the case for the eukaryotic cell cycle regulation having its origins in archaea

    Investigating the Evolution of the Ubiquitin Proteasome System (UPS) and the Endosomal Sorting Complex Required for Transport (ESCRT) system in the archaea; novel insights from an uncultivated Asgard archaeon, Odinarchaeum yellowstonii LCB_4

    No full text
    Protein homeostasis is vital for cell viability across all domains of life. In eukaryotes, it is maintained by the Ubiquitin Proteasome System (UPS) and the autophagy–lysosomal pathway (ALP) (Figure 1). The UPS function is performed by the proteasome, organized into the catalytic 20S core and the regulatory 19S complex. Lysosomal degradation is mediated by the Endosomal Sorting Complex Required for Transport (ESCRT) machinery consisting of ESCRT–0, –I, –II and – III subcomplexes and the Vps4 ATPase. In archaea, the UPS also consists of the 20S core, and an associated regulatory ATPase, named the Proteasomal Activating Nucleotidase (PAN). Until recently, only ESCRT–III / Vps4 homologues were reported in archaea. However, a full ESCRT gene complement was found in the metagenomes of “Asgard” archaea, related to those of the eukaryotic systems. The aims of thisstudy were to biochemically reconstitute the UPS and ESCRT pathways of the uncultivated Asgard archaeon, Odinarchaeum yellowstonii LCB_4 (OdinLCB_4) with recombinant expression of OdinLCB_4 proteins, which were characterized structurally (crystallography, Circular Dichroism) and functionally (protein – protein, protein – lipid interactions). Thisthesisreportsthe first catalytically active, biochemically reconstituted, Asgard archaeal 20S core. Proteasomal regulators(including PAN) and other putative homologues were also studied. Moreover, all OdinLCB_4 ESCRT–I, –II and –III proteins were recombinantly expressed, and their interaction with lipids and other ESCRT proteins was investigated. The ESCRT–I proteins formed a stable complex with ubiquitin, but the ESCRT–I and ESCRT–II components did not interact. A crystal structure of ESCRT–II/Vps25 revealed the evolutionarily conservation of tandem winged–helix domains, identified previously in eukaryotic ESCRT–II homologues. Putative UPS – ESCRT cross–talk was also studied and collaborative work on the TACK archaeon Sulfolobus acidocaldarius revealed that CdvB (an ESCRT–III homologue) was degraded by the proteasome, thereby regulating cell division. Thisstudy therefore characterizes key eukaryotic signature protein pathways of Asgard and TACK archaea reinforcing established theories of eukaryogenesis. Future work could unravel the complexity of these mechanisms in archaea and advance our understanding of the evolutionary links between archaea and eukaryotes

    Modes of action of the archaeal Mre11/Rad50 DNA-repair complex revealed by fast-scan atomic force microscopy

    No full text
    Mre11 and Rad50 (M/R) proteins are part of an evolutionarily conserved macromolecular apparatus that maintains genomic integrity through repair pathways. Prior structural studies have revealed that this apparatus is extremely dynamic, displaying flexibility in the long coiled-coil regions of Rad50, a member of the structural maintenance of chromosome (SMC) superfamily of ATPases. However, many details of the mechanics of M/R chromosomal manipulation during DNA-repair events remain unclear. Here, we investigate the properties of the thermostable M/R complex from the archaeon Sulfolobus acidocaldarius using atomic force microscopy (AFM) to understand how this macromolecular machinery orchestrates DNA repair. While previous studies have observed canonical interactions between the globular domains of M/R and DNA, we observe transient interactions between DNA substrates and the Rad50 coiled coils. Fast-scan AFM videos (at 1–2 frames per second) of M/R complexes reveal that these interactions result in manipulation and translocation of the DNA substrates. Our study also shows dramatic and unprecedented ATP-dependent DNA unwinding events by the M/R complex, which extend hundreds of base pairs in length. Supported by molecular dynamic simulations, we propose a model for M/R recognition at DNA breaks in which the Rad50 coiled coils aid movement along DNA substrates until a DNA end is encountered, after which the DNA unwinding activity potentiates the downstream homologous recombination (HR)-mediated DNA repair

    Characterisation of the Ubiquitin-ESCRT pathway in Asgard archaea sheds new light on origins of membrane trafficking in eukaryotes

    No full text
    The ESCRT machinery performs a critical role in membrane remodelling events in all eukaryotic cells, including in membrane trafficking, membrane repair, cytokinetic abscission, in viral egress, and in the generation of extracellular vesicles. While the machinery is complex in modern day eukaryotes, where it comprises dozens of proteins, the system has simpler and more ancient origins. Indeed, homologues of ESCRT-III and the Vps4 ATPase, the proteins that execute the final membrane scission reaction, play analogous roles in cytokinesis and potentially in extracellular vesicle formation in TACK archaea where ESCRT-I and II homologues seem to be absent. Here, we explore the phylogeny, structure, and biochemistry of homologues of the ESCRT machinery and the associated ubiquitylation system found in genome assemblies of the recently discovered Asgard archaea. In these closest living prokaryotic relatives of eukaryotes, we provide evidence for the ESCRT-I and II sub-complexes being involved in the ubiquitin-directed recruitment of ESCRT-III,_as it is in eukaryotes. This analysis suggests a pre-eukaryotic origin for the Ub-coupled ESCRT system and a likely path of ESCRT evolution via a series of gene duplication and diversification events

    Asgard archaea shed light on the evolutionary origins of the eukaryotic ubiquitin-ESCRT machinery.

    Get PDF
    The ESCRT machinery, comprising of multiple proteins and subcomplexes, is crucial for membrane remodelling in eukaryotic cells, in processes that include ubiquitin-mediated multivesicular body formation, membrane repair, cytokinetic abscission, and virus exit from host cells. This ESCRT system appears to have simpler, ancient origins, since many archaeal species possess homologues of ESCRT-III and Vps4, the components that execute the final membrane scission reaction, where they have been shown to play roles in cytokinesis, extracellular vesicle formation and viral egress. Remarkably, metagenome assemblies of Asgard archaea, the closest known living relatives of eukaryotes, were recently shown to encode homologues of the entire cascade involved in ubiquitin-mediated membrane remodelling, including ubiquitin itself, components of the ESCRT-I and ESCRT-II subcomplexes, and ESCRT-III and Vps4. Here, we explore the phylogeny, structure, and biochemistry of Asgard homologues of the ESCRT machinery and the associated ubiquitylation system. We provide evidence for the ESCRT-I and ESCRT-II subcomplexes being involved in ubiquitin-directed recruitment of ESCRT-III, as it is in eukaryotes. Taken together, our analyses suggest a pre-eukaryotic origin for the ubiquitin-coupled ESCRT system and a likely path of ESCRT evolution via a series of gene duplication and diversification events

    Proteasome-mediated protein degradation resets the cell division cycle and triggers ESCRT-III-mediated cytokinesis in an archaeon

    No full text
    The archaeon Sulfolobus acidocaldarius is a relative of eukaryotes known to progress orderly through its cell division cycle despite lacking obvious CDK/cyclin homologues. Here, in exploring the mechanisms underpinning archaeal cell division cycle control, we show that the proteasome of S. acidocaldarius, like its eukaryotic counterpart, regulates the transition from the end of one cell division cycle to the beginning of the next. Further, we identify the archaeal ESCRT-III homologue CdvB as a key target of the proteasome, and show that state-dependent degradation of CdvB triggers archaeal cell division by allowing constriction of a CdvB1:CdvB2 ESCRT-III division ring. These findings suggest an ancient role for proteasome-mediated degradation in resetting the cell division cycle in both archaea and eukaryotes

    Proteasome-mediated protein degradation resets the cell division cycle and triggers ESCRT-III-mediated cytokinesis in an archaeon

    No full text
    The archaeon Sulfolobus acidocaldarius is a relative of eukaryotes known to progress orderly through its cell division cycle despite lacking obvious CDK/cyclin homologues. Here, in exploring the mechanisms underpinning archaeal cell division cycle control, we show that the proteasome of S. acidocaldarius, like its eukaryotic counterpart, regulates the transition from the end of one cell division cycle to the beginning of the next. Further, we identify the archaeal ESCRT-III homologue CdvB as a key target of the proteasome, and show that state-dependent degradation of CdvB triggers archaeal cell division by allowing constriction of a CdvB1:CdvB2 ESCRT-III division ring. These findings suggest an ancient role for proteasome-mediated degradation in resetting the cell division cycle in both archaea and eukaryotes
    corecore