227 research outputs found

    Localization of Electromagnetic Fields in Disordered Fano Metamaterials

    Full text link
    We present the first study of disorder in planar metamaterials consisting of strongly interacting metamolecules, where coupled electric dipole and magnetic dipole modes give rise to a Fano-type resonant response and show that positional disorder leads to light localization inherently linked to collective magnetic dipole excitations. We demonstrate that the magnetic excitation persists in disordered arrays and results in the formation of "magnetic hot-spots"

    Cooperative resonance linewidth narrowing in a planar metamaterial

    Full text link
    We theoretically analyze the experimental observations of a spectral line collapse in a metamaterial array of asymmetric split ring resonators [Fedotov et al., Phys. Rev. Lett. 104, 223901 (2010)]. We show that the ensemble of closely-spaced resonators exhibits cooperative response, explaining the observed system-size dependent narrowing of the transmission resonance linewidth. We further show that this cooperative narrowing depends sensitively on the lattice spacing and that significantly stronger narrowing could be achieved in media with suppressed ohmic losses.Comment: 19 pages, 6 figures, to appear in New Journal of Physic

    Interaction of flying electromagnetic doughnut with nanostructures

    No full text
    We report on the electromagnetic properties of the single-cycle "flying doughnut" electromagnetic permutations in the context of their interactions with nanoscale objects, such as dielectric and plasmonic nanoparticles

    Strain engineering in graphene by laser irradiation

    No full text
    We demonstrate that the Raman spectrum of graphene on lithium niobate can be controlled locally by continuous exposure to laser irradiation. We interpret our results in terms of changes to doping and mechanical strain and show that our observations are consistent with light-induced gradual strain relaxation in the graphene layer

    Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency

    No full text
    We report on a planar metamaterial, the resonant transmission frequency of which does not depend on the polarization and angle of incidence of electromagnetic waves. The resonance results from the excitation of high-Q antisymmetric trapped current mode and shows sharp phase dispersion characteristic to Fano-type resonances of the electromagnetically induced transparency phenomenon

    Magnetic graphene metamaterial

    No full text
    We predict strong magnetic response by graphene split nanorings at THz frequencies allowing to achieve tunable metamaterials with very high (>100) wavelength to unit-cell ratios, not attainable by conventional noble metals
    • …
    corecore