428 research outputs found

    Probing microplasticity in small scale FCC crystals via Dynamic Mechanical Analysis

    Get PDF
    In small-scale metallic systems, collective dislocation activity has been correlated with size effects in strength and with a step-like plastic response under uniaxial compression and tension. Yielding and plastic flow in these samples is often accompanied by the emergence of multiple dislocation avalanches. Dislocations might be active pre-yield, but their activity typically cannot be discerned because of the inherent instrumental noise in detecting equipment. We apply Alternate Current (AC) load perturbations via Dynamic Mechanical Analysis (DMA) during quasi-static uniaxial compression experiments on single crystalline Cu nano-pillars with diameters of 500 nm, and compute dynamic moduli at frequencies 0.1, 0.3, 1, and 10 Hz under progressively higher static loads until yielding. By tracking the collective aspects of the oscillatory stress-strain-time series in multiple samples, we observe an evolving dissipative component of the dislocation network response that signifies the transition from elastic behavior to dislocation avalanches in the globally pre-yield regime. We postulate that microplasticity, which is associated with the combination of dislocation avalanches and slow viscoplastic relaxations, is the cause of the dependency of dynamic modulus on the driving rate and the quasi-static stress. We construct a continuum mesoscopic dislocation dynamics model to compute the frequency response of stress over strain and obtain a consistent agreement with experimental observations. The results of our experiments and simulations present a pathway to discern and quantify correlated dislocation activity in the pre-yield regime of deforming crystals.Comment: 5 pages, 3 figure

    Therapy-Related Myeloid Malignancies in Myeloma

    Get PDF
    Therapy related myeloid malignancies are an increasingly recognized treatment complication in patients undergoing therapy for multiple myeloma. The main predisposing factors are the alkylating agents, topoisomerase II inhibitors and radiotherapy, but recently questions have been raised regarding the immunomodulatory agent lenalidomide. Little is known about the new antimyeloma agents in the context of therapy related myeloid malignancies. The duration of treatment and the time from diagnosis are the main contributing factors in alkylating induced myeloid malignancies which occur 5–10 years after treatment, chromosome 5 and 7 abnormalities being the characteristic finding. High dose therapy (HDT) does not seem to be a major contributing factor per se in multiple myeloma. In a number of large published series, all the factors related with therapy-induced myelodysplasia were defined prior to HDT. Topoisomerase II inhibitors induce mainly acute leukemias which invariably correlate with dysregulation of the MLL gene. Radiotherapy causes therapy related myelodysplasia if applied in bone marrow producing areas, especially if combined with chemotherapy. Therapy related myeloid malignancies generally herald a poor prognosis. Karyotypic abnormalities seem to be the main prognostic factor. In all cases the risk for therapy related myeloid malignancies drops sharply by 10 years after the treatment

    A Characterization Method for Al Recovery from Dross Based on Compression at Elevated Temperatures

    Get PDF
    When aluminum or its alloys are melted, considerable amounts of dross are produced. The alloy type and the method used in the production of aluminum products play an important role in the amount of dross that will result as a byproduct. The current needs of the Al industry as well as economic and environmental factors demand the recovery of the pure material that is lost during dross removal by simple and efficient methods that can be applied within the foundry. Most cases of Al recovery employ methods of dross compression at high temperatures. This investigation attempts to develop a mathematical model to characterize the efficiency of the recovery process that can be implemented for any dross collection method or even compression device, facilitating the direct comparison of recovery methods

    Modeling growth, lipid accumulation and lipid turnover in submerged batch cultures of Umbelopsis isabellina

    Get PDF
    The production of lipids by oleaginous yeast and fungi becomes more important because these lipids can be used for biodiesel production. To understand the process of lipid production better, we developed a model for growth, lipid production and lipid turnover in submerged batch fermentation. This model describes three subsequent phases: exponential growth when both a C-source and an N-source are available, carbohydrate and lipid production when the N-source is exhausted and turnover of accumulated lipids when the C-source is exhausted. The model was validated with submerged batch cultures of the fungus Umbelopsis isabellina (formerly known as Mortierella isabellina) with two different initial C/N-ratios. Comparison with chemostat cultures with the same strain showed a significant difference in lipid production: in batch cultures, the initial specific lipid production rate was almost four times higher than in chemostat cultures but it decreased exponentially in time, while the maximum specific lipid production rate in chemostat cultures was independent of residence time. This indicates that different mechanisms for lipid production are active in batch and chemostat cultures. The model could also describe data for submerged batch cultures from literature well

    Tissue detection of natural killer cells in colorectal adenocarcinoma

    Get PDF
    BACKGROUND: Natural killer (NK) cells represent a first line of defence against a developing cancer; however, their exact role in colorectal cancer remains undetermined. The aim of the present study was to evaluate the expression of CD16 and CD57 [immunohistochemical markers of natural NK cells] in colorectal adenocarcinoma. METHODS: Presence of NK cells was investigated in 82 colorectal adenocarcinomas. Immunohistochemical analysis was performed, using 2 monoclonal antibodies (anti-Fc Gamma Receptor II, CD16 and an equivalent to Leu-7, specific for CD-57). The number of immunopositive cells (%) was evaluated by image analysis. The cases were characterized according to: patient gender and age, tumor location, size, grade, bowel wall invasion, lymph node metastases and Dukes' stage. RESULTS: NK cells were detected in 79/82 cases at the primary tumor site, 27/33 metastatic lymph nodes and 3/4 hepatic metastases; they were detected in levels similar to those reported in the literature, but their presence was not correlated to the clinical or pathological characteristics of the series, except for a negative association with the patients' age (p = 0.031). CONCLUSIONS: Our data do not support an association of NK cell tissue presence with clinical or pathological variables of colorectal adenocarcinoma, except for a negative association with the patients' age; this might possibly be attributed to decreased adhesion molecule expression in older ages

    DT‐PACE/ESHAP chemotherapy regimens as salvage therapy for multiple myeloma prior to autologous stem cell transplantation

    Get PDF
    Routine use of novel agents to treat newly diagnosed and relapsed multiple myeloma (MM) produces high response rates and improved survival. However, 15–20% of patients have suboptimal responses and their management remains challenging.1 Traditional regimens, such as DT‐PACE (dexamethasone, thalidomide, cisplatin, doxorubicin, cyclophosphamide, etoposide) and ESHAP (etoposide, methylprednisolone, cytarabine, cisplatin) are employed in patients with relapsed/refractory (RR) disease, and may bridge patients to autologous stem cell transplantation (ASCT).2-4 Originally developed to improve responses to traditional chemotherapy regimens, and enable stem cell mobilization,5-7 the role of infusional regimens in the context of novel agents is unclear, especially as recently reported series indicate relatively poor outcomes.8, 9 These regimens can be associated with significant toxicity,2 placing a burden on healthcare resources.10 We undertook a single‐centre retrospective analysis to assess the role of infusional regimens in RR MM patients to explore and identify features associated with clinical benefit. Relevant clinical information was obtained from electronic records. Overall response rate (ORR) and cytogenetic risk were assessed as per International Myeloma Working Group (IMWG) criteria (Table I).11 [Progression‐free (PFS) and overall survival (OS) were estimated using Kaplan–Meier and Cox regression methods (time‐dependent where appropriate)]

    Modeling lipid accumulation in oleaginous fungi in chemostat cultures. II: Validation of the chemostat model using yeast culture data from literature

    Get PDF
    A model that predicts cell growth, lipid accumulation and substrate consumption of oleaginous fungi in chemostat cultures (Meeuwse et al. in Bioproc Biosyst Eng. doi:10.1007/s00449-011-0545-8, 2011) was validated using 12 published data sets for chemostat cultures of oleaginous yeasts and one published data set for a poly-hydroxyalkanoate accumulating bacterial species. The model could describe all data sets well with only minor modifications that do not affect the key assumptions, i.e. (1) oleaginous yeasts and fungi give the highest priority to C-source utilization for maintenance, second priority to growth and third priority to lipid accumulation, and (2) oleaginous yeasts and fungi have a growth rate independent maximum specific lipid production rate. The analysis of all data showed that the maximum specific lipid production rate is in most cases very close to the specific production rate of membrane and other functional lipids for cells growing at their maximum specific growth rate. The limiting factor suggested by Ykema et al. (in Biotechnol Bioeng 34:1268–1276, 1989), i.e. the maximum glucose uptake rate, did not give good predictions of the maximum lipid production rate

    Defining Unmet Need Following Lenalidomide Refractoriness: Real-World Evidence of Outcomes in Patients With Multiple Myeloma

    Get PDF
    Background: The treatment paradigm for multiple myeloma (MM) continues to evolve with the development of novel therapies and the earlier adoption of continuous treatments into the treatment pathway. Lenalidomide-refractory patients now represent a challenge with inferior progression free survival (PFS) reported to subsequent treatments. We therefore sought to describe the natural history of MM patients following lenalidomide in the real world. Methods: This was a retrospective cohort review of patients with relapsed MM who received lenalidomide-based treatments in the U.K. Data were collected for demographics, subsequent therapies, treatment responses, survival outcomes and clinical trial enrollment. Results: 198 patients received lenalidomide-based treatments at a median of 2 prior lines of therapy at a median of 41 months (range 0.5-210) from diagnosis. 114 patients (72% of 158 evaluable) became refractory to lenalidomide. The overall survival (OS) after lenalidomide failure was 14.7 months having received between 0-6 subsequent lines of therapy. Few deep responses were observed with subsequent treatments and the PFS to each further line was < 7 months. There was a steep reduction in numbers of patients able to receive further treatment, with an associated increase in number of deaths. The OS of patients progressing on lenalidomide who did not enter a clinical trial incorporating novel agents was very poor (8.8 months versus 30 months, p 0.0002), although the trials group were a biologically fitter group. Conclusion: These data demonstrate the poor outcomes of patients failing lenalidomidebased treatments in the real world, the highlight need for more effective treatments
    corecore