988 research outputs found

    Magnon dispersion and thermodynamics in CsNiF_3

    Full text link
    We present an accurate transfer matrix renormalization group calculation of the thermodynamics in a quantum spin-1 planar ferromagnetic chain. We also calculate the field dependence of the magnon gap and confirm the accuracy of the magnon dispersion derived earlier through an 1/n expansion. We are thus able to examine the validity of a number of previous calculations and further analyze a wide range of experiments on CsNiF_3 concerning the magnon dispersion, magnetization, susceptibility, and specific heat. Although it is not possible to account for all data with a single set of parameters, the overall qualitative agreement is good and the remaining discrepancies may reflect departure from ideal quasi-one-dimensional model behavior. Finally, we present some indirect evidence to the effect that the popular interpretation of the excess specific heat in terms of sine-Gordon solitons may not be appropriate.Comment: 9 pages 10 figure

    Robust seismic velocity change estimation using ambient noise recordings

    Full text link
    We consider the problem of seismic velocity change estimation using ambient noise recordings. Motivated by [23] we study how the velocity change estimation is affected by seasonal fluctuations in the noise sources. More precisely, we consider a numerical model and introduce spatio-temporal seasonal fluctuations in the noise sources. We show that indeed, as pointed out in [23], the stretching method is affected by these fluctuations and produces misleading apparent velocity variations which reduce dramatically the signal to noise ratio of the method. We also show that these apparent velocity variations can be eliminated by an adequate normalization of the cross-correlation functions. Theoretically we expect our approach to work as long as the seasonal fluctuations in the noise sources are uniform, an assumption which holds for closely located seismic stations. We illustrate with numerical simulations and real measurements that the proposed normalization significantly improves the accuracy of the velocity change estimation

    Vortex Pull by an External Current

    Full text link
    In the context of a dynamical Ginzburg-Landau model it is shown numerically that under the influence of a homogeneous external current J the vortex drifts against the current with velocity V=JV= -J in agreement to earlier analytical predictions. In the presence of dissipation the vortex undergoes skew deflection at an angle 90<δ<18090^{\circ} < \delta < 180^{\circ} with respect to the external current. It is shown analytically and verified numerically that the angle δ\delta and the speed of the vortex are linked through a simple mathematical relation.Comment: 19 pages, LATEX, 6 Postscript figures included in separate compressed fil

    Green function Retrieval and Time-reversal in a Disordered World

    Full text link
    We apply the theory of multiple wave scattering to two contemporary, related topics: imaging with diffuse correlations and stability of time-reversal of diffuse waves, using equipartition, coherent backscattering and frequency speckles as fundamental concepts.Comment: 1 figur

    Solitary Waves of Planar Ferromagnets and the Breakdown of the Spin-Polarized Quantum Hall Effect

    Full text link
    A branch of uniformly-propagating solitary waves of planar ferromagnets is identified. The energy dispersion and structures of the solitary waves are determined for an isotropic ferromagnet as functions of a conserved momentum. With increasing momentum, their structure undergoes a transition from a form ressembling a droplet of spin-waves to a Skyrmion/anti-Skyrmion pair. An instability to the formation of these solitary waves is shown to provide a mechanism for the electric field-induced breakdown of the spin-polarized quantum Hall effect.Comment: 5 pages, 3 eps-figures, revtex with epsf.tex and multicol.st

    Search for the Nondimerized Quantum Nematic Phase in the Spin-1 Chain

    Full text link
    Chubukov's proposal concerning the possibility of a nondimerized quantum nematic phase in the ground-state phase diagram of the bilinear-biquadratic spin-1 chain is studied numerically. Our results do not support the existence of this phase, but they rather indicate a direct transition from the ferromagnetic into the dimerized phase.Comment: REVTEX, 14 pages +8 PostScript figure

    Scattering of elastic waves in heterogeneous media with local isotropy

    Get PDF
    The scattering of elastic waves in heterogeneous media is discussed. Explicit expressions are derived for the attenuation of longitudinal and transverse elastic waves in terms of the statistics of the density and Lame´ parameter fluctuations. The derivation is based upon diagrammatic methods with the problem posed in terms of the Dyson equation. The Dyson equation is solved for the mean field response. The results are given here in a straightforward manner, in which the attenuations reduce to simple integrals on the unit circle. The medium is assumed statistically homogeneous and statistically isotropic. This model, with assumed local isotropic properties, is expected to apply to many materials

    Dynamical properties of Au from tight-binding molecular-dynamics simulations

    Full text link
    We studied the dynamical properties of Au using our previously developed tight-binding method. Phonon-dispersion and density-of-states curves at T=0 K were determined by computing the dynamical-matrix using a supercell approach. In addition, we performed molecular-dynamics simulations at various temperatures to obtain the temperature dependence of the lattice constant and of the atomic mean-square-displacement, as well as the phonon density-of-states and phonon-dispersion curves at finite temperature. We further tested the transferability of the model to different atomic environments by simulating liquid gold. Whenever possible we compared these results to experimental values.Comment: 7 pages, 9 encapsulated Postscript figures, submitted to Physical Review
    corecore