339 research outputs found

    In search of the Earth-forming reservoir: Mineralogical, chemical, and isotopic characterizations of the ungrouped achondrite NWA 5363/NWA 5400 and selected chondrites

    Get PDF
    High-precision isotope data of meteorites show that the long-standing notion of a “chondritic uniform reservoir” is not always applicable for describing the isotopic composition of the bulk Earth and other planetary bodies. To mitigate the effects of this “isotopic crisis” and to better understand the genetic relations of meteorites and the Earth-forming reservoir, we performed a comprehensive petrographic, elemental, and multi-isotopic (O, Ca, Ti, Cr, Ni, Mo, Ru, and W) study of the ungrouped achondrites NWA 5363 and NWA 5400, for both of which terrestrial O isotope signatures were previously reported. Also, we obtained isotope data for the chondrites Pillistfer (EL6), Allegan (H6), and Allende (CV3), and compiled available anomaly data for undifferentiated and differentiated meteorites. The chemical compositions of NWA 5363 and NWA 5400 are strikingly similar, except for fluid mobile elements tracing desert weathering. We show that NWA 5363 and NWA 5400 are paired samples from a primitive achondrite parent-body and interpret these rocks as restite assemblages after silicate melt extraction and siderophile element addition. Hafnium-tungsten chronology yields a model age of 2.2 ± 0.8 Myr after CAI, which probably dates both of these events within uncertainty. We confirm the terrestrial O isotope signature of NWA 5363/NWA 5400; however, the discovery of nucleosynthetic anomalies in Ca, Ti, Cr, Mo, and Ru reveals that the NWA5363/NWA 5400 parent-body is not the “missing link” that could explain the composition of the Earth by the mixing of known meteorites. Until this “missing link” or a direct sample of the terrestrial reservoir is identified, guidelines are provided of how to use chondrites for estimating the isotopic composition of the bulk Earth

    Planning Considerations for a Mars Sample Receiving Facility: Summary and Interpretation of Three Design Studies

    Get PDF
    It has been widely understood for many years that an essential component of a Mars Sample Return mission is a Sample Receiving Facility (SRF). The purpose of such a facility would be to take delivery of the flight hardware that lands on Earth, open the spacecraft and extract the sample container and samples, and conduct an agreed-upon test protocol, while ensuring strict containment and contamination control of the samples while in the SRF. Any samples that are found to be non-hazardous (or are rendered non-hazardous by sterilization) would then be transferred to long-term curation. Although the general concept of an SRF is relatively straightforward, there has been considerable discussion about implementation planning. The Mars Exploration Program carried out an analysis of the attributes of an SRF to establish its scope, including minimum size and functionality, budgetary requirements (capital cost, operating costs, cost profile), and development schedule. The approach was to arrange for three independent design studies, each led by an architectural design firm, and compare the results. While there were many design elements in common identified by each study team, there were significant differences in the way human operators were to interact with the systems. In aggregate, the design studies provided insight into the attributes of a future SRF and the complex factors to consider for future programmatic planning

    Mineralogy and petrology of comet 81P/wild 2 nucleus samples

    Get PDF
    The bulk of the comet 81P/Wild 2 (hereafter Wild 2) samples returned to Earth by the Stardust spacecraft appear to be weakly constructed mixtures of nanometer-scale grains, with occasional much larger (over 1 micrometer) ferromagnesian silicates, Fe-Ni sulfides, Fe-Ni metal, and accessory phases. The very wide range of olivine and low-Ca pyroxene compositions in comet Wild 2 requires a wide range of formation conditions, probably reflecting very different formation locations in the protoplanetary disk. The restricted compositional ranges of Fe-Ni sulfides, the wide range for silicates, and the absence of hydrous phases indicate that comet Wild 2 experienced little or no aqueous alteration. Less abundant Wild 2 materials include a refractory particle, whose presence appears to require radial transport in the early protoplanetary disk

    Conference on "Isotope Tracers in Geochemistry and Geophysics": In honor of Professor Gerald J. Wasserburg on the occasion of his sixtieth birthday

    No full text
    On March 23-25, 1987, more than 75 colleagues and former students from ten countries descended on Caltech to honor Professor Gerald (Jerry) J. Wasserburg on the occasion of his sixtieth birthday. Highlighting the three-day activities was a conference entitled "Isotope Tracers in Geochemistry and Geophysics", consisting of contributed research papers, all strongly influenced by an association with Jerry. It was with some nostalgia as well as with an appreciation of their current relevance that we listened to familiar subjects-Precambrian geochronology, radiogenic isotopes as petrogenetic tracers, crust-mantle differentiation, high-resolution ^(40)Ar-^(39)Ar chronology, chemistry of the oceans, rare gases in the atmosphere, isotopic anomalies in meteorites, nuc1eosynthetic components, and cosmochronology. Several talks dealing with terrestrial heat flow, the Antarctic ozone hole, and water solubility in magmas refused to be constrained even by the broad theme of the conference. The encyclopaedic interests of our mentor were made all the more evident by this diversity of scientific questioning

    Mars Biosignature - Detection Capabilities: A Method for Objective Comparison of In Situ Measurements and Sample Return

    No full text
    A Mars sample-return mission has been proposed within NASA's Mars Exploration Program. Studying Martian samples in laboratories on Earth could address many important issues in planetary science, but arguably none is as scientifically compelling as the question of whether biosignatures indicative of past or present life exist on that planet. It is reasonable to ask before embarking on a sample-return mission whether equivalent investigation of Martian biosignatures could be conducted in situ. This study presents an approach to (1)identifying an optimal instrument suite for in situ detection of biosignatures on Mars,and (2)comparing the projected confidence level of in situ detection in a 2026 timeframe to that of Earth-based analysis. We identify a set of candidate instruments, the development of which is projected to be achievable by 2026 well within a $200 million cost cap. Assuming that any biosignatures near the surface of Mars are similar to those of terrestrial life, we find that this instrument suite, if successfully developed and deployed, would enable in situ biosignature detection at essentially the same level of confidence as that of Earth-based analysis of the same samples. At a cost cap of half that amount,the confidence level of in situbiosignature detection analysis could reach about 90% that of Earth-based investigations

    Calcium-48 isotopic anomalies in bulk chondrites and achondrites: Evidence for a uniform isotopic reservoir in the inner protoplanetary disk

    No full text
    Thermal ionization mass spectrometry (TIMS) was used to measure the calcium isotopic compositions of carbonaceous, ordinary, enstatite chondrites as well as eucrites and aubrites. We find that after correction for mass-fractionation by internal normalization to a fixed ^(42)Ca/^(44)Ca ratio, the ^(43)Ca/^(44)Ca and ^(46)Ca/^(44)Ca ratios are indistinguishable from terrestrial ratios. In contrast, the ^(48)Ca/^(44)Ca ratios show significant departure from the terrestrial composition (from −2 ε in eucrites to +4 ε in CO and CV chondrites). Isotopic anomalies in ε^(48)Ca correlate with ε ^(50)Ti ε^(48)Ca=(1.09±0.11)×ε^(50)Ti+(0.03±0.14). Further work is needed to identify the carrier phase of ^(48)Ca–^(50)Ti anomalies but we suggest that it could be perovskite and that the stellar site where these anomalies were created was also responsible for the nucleosynthesis of the bulk of the solar system inventory of these nuclides. The Earth has identical ^(48)Ca isotopic composition to enstatite chondrites (EH and EL) and aubrites. This adds to a long list of elements that display nucleosynthetic anomalies at a bulk planetary scale but show identical or very similar isotopic compositions between enstatite chondrites, aubrites, and Earth. This suggests that the inner protoplanetary disk was characterized by a uniform isotopic composition (IDUR for Inner Disk Uniform Reservoir), sampled by enstatite chondrites and aubrites, from which the Earth drew most of its constituents. The terrestrial isotopic composition for ^(17)O, ^(48)Ca, ^(50)Ti, ^(62)Ni, and ^(92)Mo is well reproduced by a mixture of 91% enstatite, 7% ordinary, and 2% carbonaceous chondrites. The Earth was not simply made of enstatite chondrites but it formed from the same original material that was later modified by nebular and disk processes. The Moon-forming impactor probably came from the same region as the other embryos that made the Earth, explaining the strong isotopic similarity between lunar and terrestrial rocks

    Calcium-aluminum-rich inclusions with fractionation and unknown nuclear effects (FUN CAIs): I. Mineralogy, petrology, and oxygen isotopic compositions

    No full text
    We present a detailed characterization of the mineralogy, petrology, and oxygen isotopic compositions of twelve FUN CAIs, including C1 and EK1-4-1 from Allende (CV), that were previously shown to have large isotopic fractionation patterns for magnesium and oxygen, and large isotopic anomalies of several elements. The other samples show more modest patterns of isotopic fractionation and have smaller but significant isotopic anomalies. All FUN CAIs studied are coarse-grained igneous inclusions: Type B, forsterite-bearing Type B, compact Type A, and hibonite-rich. Some inclusions consist of two mineralogically distinct lithologies, forsterite-rich and forsterite-free/poor. All the CV FUN CAIs experienced postcrystallization open-system iron-alkali-halogen metasomatic alteration resulting in the formation of secondary minerals commonly observed in non-FUN CAIs from CV chondrites. The CR FUN CAI GG#3 shows no evidence for alteration. In all samples, clear evidence of oxygen isotopic fractionation was found. Most samples were initially ^(16)O-rich. On a three-oxygen isotope diagram, various minerals in each FUN CAI (spinel, forsterite, hibonite, dmisteinbergite, most fassaite grains, and melilite (only in GG#3)), define mass-dependent fractionation lines with a similar slope of ∼0.5. The different inclusions have different Δ^(17)O values ranging from ∼−25‰ to ∼−16‰. Melilite and plagioclase in the CV FUN CAIs have ^(16)O-poor compositions (Δ^(17)O ∼−3‰) and plot near the intercept of the Allende CAI line and the terrestrial fractionation line. We infer that mass-dependent fractionation effects of oxygen isotopes in FUN CAI minerals are due to evaporation during melt crystallization. Differences in Δ^(17)O values of mass-dependent fractionation lines defined by minerals in individual FUN CAIs are inferred to reflect differences in Δ^(17)O values of their precursors. Differences in δ^(18)O values of minerals defining the mass-dependent fractionation lines in several FUN CAIs are consistent with their inferred crystallization sequence, suggesting these minerals crystallized during melt evaporation. In other FUN CAIs, no clear correlation between δ^(18)O values of individual minerals and their inferred crystallization sequence is observed, possibly indicating gas-melt back reaction and oxygen-isotope exchange in a ^(16)O-rich gaseous reservoir. After oxygen-isotope fractionation, some FUN CAIs could have experienced partial melting and gas-melt oxygen-isotope exchange in a ^(16)O-poor gaseous reservoir that resulted in crystallization of ^(16)O-depleted fassaite, melilite and plagioclase. The final oxygen isotopic compositions of melilite and plagioclase in the CV FUN CAIs may have been established on the CV parent asteroid as a result of isotope exchange with a ^(16)O-poor fluid during hydrothermal alteration. We conclude that FUN CAIs are part of a general family of refractory inclusions showing various degrees of fractionation effects due to evaporative processes superimposed on sampling of isotopically heterogeneous material. These processes have been experienced both by FUN and non-FUN igneous CAIs. Generally, the inclusions identified as FUN show larger isotope fractionation effects than non-FUN CAIs. There is a wide spread in UN isotopic anomalies in a large number of CAIs not exhibiting large fractionation effects in oxygen, magnesium, and silicon. The question of why some FUN CAIs show more extreme UN isotopic effects is attributed by us to limited sampling and not a special source of isotopically anomalous material. We consider the majority of igneous CAIs to be the result of several stages of thermal processing (evaporation, condensation, and melting) of aggregates of solid precursors composed of incompletely isotopically homogenized materials. The unknown nuclear effects in CAIs are common to both FUN and non-FUN CAIs, and are not a special characteristic of FUN inclusions but represent the spectrum of results from sampling a very heterogeneous medium in the accreting Solar System

    Mars chronology: Assessing techniques for quantifying surficial processes

    No full text
    Currently, the absolute chronology of Martian rocks, deposits and events is based mainly on crater counting and remains highly imprecise with epoch boundary uncertainties in excess of 2 billion years. Answers to key questions concerning the comparative origin and evolution of Mars and Earth will not be forthcoming without a rigid Martian chronology, enabling the construction of a time scale comparable to Earth\u27s. Priorities for exploration include calibration of the cratering rate, dating major volcanic and fluvial events and establishing chronology of the polar layered deposits. If extinct and/or extant life is discovered, the chronology of the biosphere will be of paramount importance. Many radiometric and cosmogenic techniques applicable on Earth and the Moon will apply to Mars after certain baselines (e.g. composition of the atmosphere, trace species, chemical and physical characteristics of Martian dust) are established. The high radiation regime may pose a problem for dosimetry-based techniques (e.g. luminescence). The unique isotopic composition of nitrogen in the Martian atmosphere may permit a Mars-specific chronometer for tracing the time-evolution of the atmosphere and of lithic phases with trapped atmospheric gases. Other Mars-specific chronometers include measurement of gas fluxes and accumulation of platinum group elements (PGE) in the regolith. Putting collected samples into geologic context is deemed essential, as is using multiple techniques on multiple samples. If in situ measurements are restricted to a single technique it must be shown to give consistent results on multiple samples, but in all cases, using two or more techniques (e.g. on the same lander) will reduce error. While there is no question that returned samples will yield the best ages, in situ techniques have the potential to be flown on multiple missions providing a larger data set and broader context in which to place the more accurate dates. © 2004 Elsevier B.V. All rights reserved
    corecore