5 research outputs found

    Application of chemometric methods for assessment and modelling of microbiological quality data concerning coastal bathing water in Greece

    Get PDF
    Background. Worldwide, the aim of managing water is to safeguard human health whilst maintaining sustainable aquatic and associated terrestrial, ecosystems. Because human enteric viruses are the most likely pathogens responsible for waterborne diseases from recreational water use, but detection methods are complex and costly for routine monitoring, it is of great interest to determine the quality of coastal bathing water with a minimum cost and maximum safety. Design and methods. This study handles the assessment and modelling of the microbiological quality data of 2149 seawater bathing areas in Greece over 10-year period (1997-2006) by chemometric methods. Results. Cluster analysis results indicated that the studied bathing beaches are classified in accordance with the seasonality in three groups. Factor analysis was applied to investigate possible determining factors in the groups resulted from the cluster analysis, and also two new parameters were created in each group; VF1 includes E. coli, faecal coliforms and total coliforms and VF2 includes faecal streptococci/enterococci. By applying the cluster analysis in each seasonal group, three new groups of coasts were generated, group A (ultraclean), group B (clean) and group C (contaminated). Conclusions. The above analysis is confirmed by the application of discriminant analysis, and proves that chemometric methods are useful tools for assessment and modeling microbiological quality data of coastal bathing water on a large scale, and thus could attribute to effective and economical monitoring of the quality of coastal bathing water in a country with a big number of bathing coasts, like Greece

    Sonochemical degradation of ofloxacin in aqueous solutions

    No full text
    The use of low frequency (20 kHz), high energy ultrasound for the degradation of the antibiotic ofloxacin in water was investigated. Experiments were performed with a horn-type ultrasound generator at varying applied power densities (130-640 W/L), drug concentrations (5-20 mg/L), hydrogen peroxide concentrations (0-100 mM) and sparging gases (air, oxygen, nitrogen and argon). In general, conversion (which was assessed following sample absorbance at 288 nm) increased with increasing ultrasound energy and peroxide concentration and decreasing initial drug concentration. Moreover, reactions under an argon atmosphere were faster than with diatomic gases, possibly due to argon's physical properties (e.g. solubility, thermal conductivity and specific heat ratio) favoring sonochemical activity. Overall, low to moderate levels of ofloxacin degradation were achieved (i.e. it never exceeded 50%), thus indicating that radical reactions in the liquid bulk rather than thermal reactions in the vicinity of the cavitation bubble are responsible for ofloxacin degradation

    Sonochemical degradation of ofloxacin in aqueous solutions

    No full text
    The use of low frequency (20 kHz), high energy ultrasound for the degradation of the antibiotic ofloxacin in water was investigated. Experiments were performed with a horn-type ultrasound generator at varying applied power densities (130-640 W/L), drug concentrations (5-20 mg/L), hydrogen peroxide concentrations (0-100 mM) and sparging gases (air, oxygen, nitrogen and argon). In general, conversion (which was assessed following sample absorbance at 288 nm) increased with increasing ultrasound energy and peroxide concentration and decreasing initial drug concentration. Moreover, reactions under an argon atmosphere were faster than with diatomic gases, possibly due to argon's physical properties (e.g. solubility, thermal conductivity and specific heat ratio) favoring sonochemical activity. Overall, low to moderate levels of ofloxacin degradation were achieved (i.e. it never exceeded 50%), thus indicating that radical reactions in the liquid bulk rather than thermal reactions in the vicinity of the cavitation bubble are responsible for ofloxacin degradation

    Application of multivariate statistical methods for groundwater physicochemical and biological quality assessment in the context of public health

    No full text
    Three representative areas (lowland, semi-mountainous, and coastal) have been selected for the collection of drinking water samples, and a total number of 28 physical, chemical, and biological parameters per water sample have been determined and analyzed. The mean values of the physical and chemical parameters were found to be within the limits mentioned in the 98/83/EEC directive. The analysis of biological parameters shows that many of the water samples are inadequate for human consumption because of the presence of bacteria. Cluster analysis (CA) first was used to classify sample sites with similar properties and results in three groups of sites; discriminant analysis (DA) was used to construct the best discriminant functions to confirm the clusters determined by CA and evaluate the spatial variations in water quality. The standard mode discriminant functions, using 17 parameters, yielded classification matrix correctly assigning 96.97% of the cases. In the stepwise mode, the DA produced a classification matrix with 96.36% correct assignments using only ten parameters (EC, Cl (-aEuro parts per thousand), NO(3) (-aEuro parts per thousand), HCO(3) (-aEuro parts per thousand), CO(3) (-aEuro parts per thousand 2), Ca (+ 2), Na (+) , Zn, Mn, and Pb). CA and factor analysis (FA) are used to characterize water quality and assist in water quality monitoring planning. CA proved that two major groups of similarity (six subclusters) between 17 physicochemical parameters are formed, and FA extracts six factors that account for 66.478% of the total water quality variation, when all samples' physicochemical data set is considered. It is noteworthy that the classification scheme obtained by CA is completely confirmed by principal component analysis
    corecore