10,125 research outputs found

    Dynamics of Scalar Fields in the Background of Rotating Black Holes

    Get PDF
    A numerical study of the evolution of a massless scalar field in the background of rotating black holes is presented. First, solutions to the wave equation are obtained for slowly rotating black holes. In this approximation, the background geometry is treated as a perturbed Schwarzschild spacetime with the angular momentum per unit mass playing the role of a perturbative parameter. To first order in the angular momentum of the black hole, the scalar wave equation yields two coupled one-dimensional evolution equations for a function representing the scalar field in the Schwarzschild background and a second field that accounts for the rotation. Solutions to the wave equation are also obtained for rapidly rotating black holes. In this case, the wave equation does not admit complete separation of variables and yields a two-dimensional evolution equation. The study shows that, for rotating black holes, the late time dynamics of a massless scalar field exhibit the same power-law behavior as in the case of a Schwarzschild background independently of the angular momentum of the black hole.Comment: 14 pages, RevTex, 6 Figure

    A current disruption mechanism in the neutral sheet for triggering substorm expansions

    Get PDF
    Two main areas were addressed in support of an effort to understand mechanism responsible for the broadband electrostatic noise (BEN) observed in the magnetotail. The first area concerns the generation of BEN in the boundary layer region of the magnetotail whereas the second area concerns the occassional presence of BEN in the neutral sheet region. For the generation of BEN in the boundary layer region, a hybrid simulation code was developed to perform reliable longtime, quiet, highly resolved simulations of field aligned electron and ion beam flow. The result of the simulation shows that broadband emissions cannot be generated by beam-plasma instability if realistic values of the ion beam parameters are used. The waves generated from beam-plasma instability are highly discrete and are of high frequencies. For the plasma sheet boundary layer condition, the wave frequencies are in the kHz range, which is incompatible with the observation that the peak power in BEN occur in the 10's of Hz range. It was found that the BEN characteristics are more consistent with lower hybrid drift instability. For the occasional presence of BEN in the neutral sheet region, a linear analysis of the kinetic cross-field streaming instability appropriate to the neutral sheet condition just prior to onset of substorm expansion was performed. By solving numerically the dispersion relation, it was found that the instability has a growth time comparable to the onset time scale of substorm onset. The excited waves have a mixed polarization in the lower hybrid frequency range. The imposed drift driving the instability corresponds to unmagnetized ions undergoing current sheet acceleration in the presence of a cross-tail electric field. The required electric field strength is in the 10 mV/m range which is well within the observed electric field values detected in the neutral sheet during substorms. This finding can potentially account for the disruption of cross-tail current and its diversion to the ionosphere to form the substorm current wedge. Furthermore, a number of features associated with substorm expansion onset can be understood based on this substorm onset scenario

    Designing an Experimental and a Reference Robot to Test and Evaluate the Impact of Cultural Competence in Socially Assistive Robotics

    Get PDF
    The article focusses on the work performed in preparation for an experimental trial aimed at evaluating the impact of a culturally competent robot for care home assistance. Indeed, it has been estabilished that the user's cultural identity plays an important role during the interaction with a robotic system and cultural competence may be one of the key elements for increasing capabilities of socially assistive robots. Specifically, the paper describes part of the work carried out for the definition and implementation of two different robotic systems for the care of older adults: a culturally competent robot, that shows its awareness of the user's cultural identity, and a reference robot, non culturally competent, but with the same functionalities of the former. The design of both robots is here described in detail, together with the key elements that make a socially assistive robot culturally competent, which should be absent in the non-culturally competent counterpart. Examples of the experimental phase of the CARESSES project, with a fictional user are reported, giving a hint of the validness of the proposed approach

    Market response to external events and interventions in spherical minority games

    Full text link
    We solve the dynamics of large spherical Minority Games (MG) in the presence of non-negligible time dependent external contributions to the overall market bid. The latter represent the actions of market regulators, or other major natural or political events that impact on the market. In contrast to non-spherical MGs, the spherical formulation allows one to derive closed dynamical order parameter equations in explicit form and work out the market's response to such events fully analytically. We focus on a comparison between the response to stationary versus oscillating market interventions, and reveal profound and partially unexpected differences in terms of transition lines and the volatility.Comment: 14 pages LaTeX, 5 (composite) postscript figures, submitted to Journal of Physics

    Plasma waves driven by gravitational waves in an expanding universe

    Full text link
    In a Friedmann-Robertson-Walker (FRW) cosmological model with zero spatial curvature, we consider the interaction of the gravitational waves with the plasma in the presence of a weak magnetic field. Using the relativistic hydromagnetic equations it is verified that large amplitude magnetosonic waves are excited, assuming that both, the gravitational field and the weak magnetic field do not break the homogeneity and isotropy of the considered FRW spacetime.Comment: 14 page

    Brane Cosmology from Heterotic String Theory

    Full text link
    We consider brane cosmologies within the context of five-dimensional actions with O(a') higher curvature corrections. The actions are compatible with bulk string amplitude calculations from heterotic string theory. We find wrapped solutions that satisfy the field equations in an approximate but acceptable manner given their complexity, where the internal four-dimensional scale factor is naturally inflating, having an exponential De-Sitter form. The temporal dependence of the metric components is non-trivial so that this metric cannot be factored as in a conformally flat case. The effective Planck mass is finite and the brane solutions localize four-dimensional gravity, while the four-dimensional gravitational constant varies with time. The Hubble constant can be freely specified through the initial value of the scalar field, to conform with recent data.Comment: 15 pages, 3 figures, LaTeX, Accepted for Publication in IJT

    A sensitive search for CO J=1-0 emission in 4C 41.17: high-excitation molecular gas at z=3.8

    Get PDF
    We report sensitive imaging observations of the CO J=1-0 line emission in the powerful high-redshift radio galaxy 4C 41.17 (z=3.8) with the NRAO Very Large Array (VLA), conducted in order to detect the large concomitant H_2 gas reservoir recently unveiled in this system by De Breuck et al (2005) via the emission of the high excitation J=4-3 line. Our observations fail to detect the J=1-0 line but yield sensitive lower limits on the R_43=(4-3)/(1-0) brightness temperature ratio of R_43 ~ 0.55 - >1.0 for the bulk of the H_2 gas mass. Such high ratios are typical of the high-excitation molecular gas phase ``fueling'' the star formation in local starbursts, but quite unlike these objects, much of the molecular gas in 4C 41.17 seems to be in such a state, and thus participating in the observed starburst episode. The widely observed and unique association of highly excited molecular gas with star forming sites allows CO line emission with large (high-J)/(low-J) intensity ratios to serve as an excellent ``marker'' of the spatial distribution of star formation in distant dust-obscured starbursts, unaffected by extinction.Comment: 7 Pages including 8 PostScript figures. Accepted for publication in Astronomy & Astrophysic
    • …
    corecore