7 research outputs found

    Characterizing Cosmic-Ray Propagation in Massive Star-forming Regions: The Case of 30 Doradus and the Large Magellanic Cloud

    Get PDF
    Using infrared, radio, and γ-ray data, we investigate the propagation characteristics of cosmic-ray (CR) electrons and nuclei in the 30 Doradus (30 Dor) star-forming region in the Large Magellanic Cloud (LMC) using a phenomenological model based on the radio-far-infrared correlation within galaxies. Employing a correlation analysis, we derive an average propagation length of ~100-140 pc for ~3 GeV CR electrons resident in 30 Dor from consideration of the radio and infrared data. Assuming that the observed γ-ray emission toward 30 Dor is associated with the star-forming region, and applying the same methodology to the infrared and γ-ray data, we estimate a ~20 GeV propagation length of 200-320 pc for the CR nuclei. This is approximately twice as large as for ~3 GeV CR electrons, corresponding to a spatial diffusion coefficient that is ~4 times higher, scaling as (R/GV)δ with δ ≈ 0.7-0.8 depending on the smearing kernel used in the correlation analysis. This value is in agreement with the results found by extending the correlation analysis to include ~70 GeV CR nuclei traced by the 3-10 GeV γ-ray data (δ ≈ 0.66 ± 0.23). Using the mean age of the stellar populations in 30 Dor and the results from our correlation analysis, we estimate a diffusion coefficient D_R ≈ (0.9-1.0) × 10^(27)(R/GV)0.7 cm^(2) s^(–1). We compare the values of the CR electron propagation length and surface brightness for 30 Dor and the LMC as a whole with those of entire disk galaxies. We find that the trend of decreasing average CR propagation distance with increasing disk-averaged star formation activity holds for the LMC, and extends down to single star-forming regions, at least for the case of 30 Dor

    Stress neuropeptide levels in adults with chest pain due to coronary artery disease: potential implications for clinical assessment

    No full text
    : Substance P (SP) and neuropeptide Y (NPY) are neuropeptides involved in nociception. The study of biochemical markers of pain in communicating critically ill coronary patients may provide insight for pain assessment and management in critical care. Purpose of the study was to to explore potential associations between plasma neuropeptide levels and reported pain intensity in coronary critical care adults, in order to test the reliability of SP measurements for objective pain assessment in critical care

    Cool outflows in galaxies and their implications

    No full text
    corecore