10,655 research outputs found
Dynamics of Scalar Fields in the Background of Rotating Black Holes
A numerical study of the evolution of a massless scalar field in the
background of rotating black holes is presented. First, solutions to the wave
equation are obtained for slowly rotating black holes. In this approximation,
the background geometry is treated as a perturbed Schwarzschild spacetime with
the angular momentum per unit mass playing the role of a perturbative
parameter. To first order in the angular momentum of the black hole, the scalar
wave equation yields two coupled one-dimensional evolution equations for a
function representing the scalar field in the Schwarzschild background and a
second field that accounts for the rotation. Solutions to the wave equation are
also obtained for rapidly rotating black holes. In this case, the wave equation
does not admit complete separation of variables and yields a two-dimensional
evolution equation. The study shows that, for rotating black holes, the late
time dynamics of a massless scalar field exhibit the same power-law behavior as
in the case of a Schwarzschild background independently of the angular momentum
of the black hole.Comment: 14 pages, RevTex, 6 Figure
A current disruption mechanism in the neutral sheet for triggering substorm expansions
Two main areas were addressed in support of an effort to understand mechanism responsible for the broadband electrostatic noise (BEN) observed in the magnetotail. The first area concerns the generation of BEN in the boundary layer region of the magnetotail whereas the second area concerns the occassional presence of BEN in the neutral sheet region. For the generation of BEN in the boundary layer region, a hybrid simulation code was developed to perform reliable longtime, quiet, highly resolved simulations of field aligned electron and ion beam flow. The result of the simulation shows that broadband emissions cannot be generated by beam-plasma instability if realistic values of the ion beam parameters are used. The waves generated from beam-plasma instability are highly discrete and are of high frequencies. For the plasma sheet boundary layer condition, the wave frequencies are in the kHz range, which is incompatible with the observation that the peak power in BEN occur in the 10's of Hz range. It was found that the BEN characteristics are more consistent with lower hybrid drift instability. For the occasional presence of BEN in the neutral sheet region, a linear analysis of the kinetic cross-field streaming instability appropriate to the neutral sheet condition just prior to onset of substorm expansion was performed. By solving numerically the dispersion relation, it was found that the instability has a growth time comparable to the onset time scale of substorm onset. The excited waves have a mixed polarization in the lower hybrid frequency range. The imposed drift driving the instability corresponds to unmagnetized ions undergoing current sheet acceleration in the presence of a cross-tail electric field. The required electric field strength is in the 10 mV/m range which is well within the observed electric field values detected in the neutral sheet during substorms. This finding can potentially account for the disruption of cross-tail current and its diversion to the ionosphere to form the substorm current wedge. Furthermore, a number of features associated with substorm expansion onset can be understood based on this substorm onset scenario
Designing an Experimental and a Reference Robot to Test and Evaluate the Impact of Cultural Competence in Socially Assistive Robotics
The article focusses on the work performed in preparation for an experimental trial aimed at evaluating the impact of a culturally competent robot for care home assistance. Indeed, it has been estabilished that the user's cultural identity plays an important role during the interaction with a robotic system and cultural competence may be one of the key elements for increasing capabilities of socially assistive robots. Specifically, the paper describes part of the work carried out for the definition and implementation of two different robotic systems for the care of older adults: a culturally competent robot, that shows its awareness of the user's cultural identity, and a reference robot, non culturally competent, but with the same functionalities of the former. The design of both robots is here described in detail, together with the key elements that make a socially assistive robot culturally competent, which should be absent in the non-culturally competent counterpart. Examples of the experimental phase of the CARESSES project, with a fictional user are reported, giving a hint of the validness of the proposed approach
Market response to external events and interventions in spherical minority games
We solve the dynamics of large spherical Minority Games (MG) in the presence
of non-negligible time dependent external contributions to the overall market
bid. The latter represent the actions of market regulators, or other major
natural or political events that impact on the market. In contrast to
non-spherical MGs, the spherical formulation allows one to derive closed
dynamical order parameter equations in explicit form and work out the market's
response to such events fully analytically. We focus on a comparison between
the response to stationary versus oscillating market interventions, and reveal
profound and partially unexpected differences in terms of transition lines and
the volatility.Comment: 14 pages LaTeX, 5 (composite) postscript figures, submitted to
Journal of Physics
Plasma waves driven by gravitational waves in an expanding universe
In a Friedmann-Robertson-Walker (FRW) cosmological model with zero spatial
curvature, we consider the interaction of the gravitational waves with the
plasma in the presence of a weak magnetic field. Using the relativistic
hydromagnetic equations it is verified that large amplitude magnetosonic waves
are excited, assuming that both, the gravitational field and the weak magnetic
field do not break the homogeneity and isotropy of the considered FRW
spacetime.Comment: 14 page
Brane Cosmology from Heterotic String Theory
We consider brane cosmologies within the context of five-dimensional actions
with O(a') higher curvature corrections. The actions are compatible with bulk
string amplitude calculations from heterotic string theory. We find wrapped
solutions that satisfy the field equations in an approximate but acceptable
manner given their complexity, where the internal four-dimensional scale factor
is naturally inflating, having an exponential De-Sitter form. The temporal
dependence of the metric components is non-trivial so that this metric cannot
be factored as in a conformally flat case. The effective Planck mass is finite
and the brane solutions localize four-dimensional gravity, while the
four-dimensional gravitational constant varies with time. The Hubble constant
can be freely specified through the initial value of the scalar field, to
conform with recent data.Comment: 15 pages, 3 figures, LaTeX, Accepted for Publication in IJT
A systematic review of the literature regarding socially assistive robots in pre-tertiary education
With rapid advances in Artificial Intelligence (AI) over the last decade, schools have increasingly employed innovative tools, intelligent applications and methods that are changing the education system with the aim of improving both user experience and learning gain in the classrooms. Even though the use of AI to education is not new, it has not unleashed its full potential yet. Much of the available research looks at educational robotics and at non-intelligent robots in education. Only recently, research has sought to assess the potential of Socially Assistive Robots (SARs), including humanoids, within the domain of classroom learning, particularly in relation to learning languages. Yet, the use of this form of AI in the field of mathematics and science constitutes a notable gap in this field. This study aims to critically review the research on the use of SARs in the pre-tertiary classroom teaching of mathematics and science. Further aim is to identify the benefits disadvantages of such technology. Databases' search conducted between January and April 2018 yielded twenty-one studies meeting the set inclusion criteria for our systematic review. Findings were grouped into four major categories synthesising current evidence of the contribution of SARs in pre- tertiary education: learning gain, user experience, attitude, and usability of SARs within classroom settings. Overall, the use of SARs in pre-tertiary education is promising, but studies focussing on mathematics and science are significantly under-represented. Further evidence is also required around SARs' specific contributions to learning more broadly, as well as enabling/impeding factors, such as SAR's personalisation and appearance, or the role of families and ethical considerations. Finally, SARs potential to enhance accessibility and inclusivity of multi-cultural pre-tertiary classroom is almost unexplored
- …