27 research outputs found

    Innovative education and training in high power laser plasmas (PowerLaPs) for plasma physics, high power laser matter interactions and high energy density physics: experimental diagnostics and simulations

    Get PDF
    The second and final year of the Erasmus Plus programme "Innovative Education and Training in high power laser plasmas", otherwise known as PowerLaPs, is described. The PowerLaPs programme employs an innovative paradigm in that it is a multi-centre programme where teaching takes place in five separate institutes with a range of different aims and styles of delivery. The "in class" time is limited to four weeks a year, and the programme spans two years. PowerLaPs aims to train students from across Europe in theoretical, applied, and laboratory skills relevant to the pursuit of research in laser plasma interaction physics and inertial confinement fusion (ICF). Lectures are intermingled with laboratory sessions, and continuous assessment activities. The programme, which is led by workers from the Hellenic Mediterranean University, and supported by co-workers from Queens University Belfast, the University of Bordeaux, the Czech Technical University in Prague, Ecole Polytechnique, the University of Ioannina, the University of Salamanca, and the University of York, has just finished its second and final year. Six Learning Teaching Training (LTT) activities have been held, at the Queens University Belfast, the University of Bordeaux, the Czech Technical University, the University of Salamanca, and the Institute of Plasma Physics and Lasers (CPPL) of the Hellenic Mediterranean University. The last of these institute hosted two two-week long Intensive Programmes (IPs), whilst the activities at the other four universities were each five days in length. In addition to this a "Multiplier Event" was held at the University of Ioannina, which will be briefly described. In this second year the work has concentrated upon training in both experimental diagnostics and simulation techniques appropriate to the study of Plasma Physics, High Power Laser-Matter Interactions and High Energy Density Physics. The nature of the programme will be described in detail and some metrics relating to the activities carried out will be presented. In particular this paper will focus upon the overall assessment of the programme

    Innovative Education and Training in high power laser plasmas (PowerLaPs) for plasma physics, high power laser-matter interactions and high energy density physics - Theory and experiments

    Get PDF
    The Erasmus Plus programme 'Innovative Education and Training in high power laser plasmas', otherwise known as PowerLaPs, is described. The PowerLaPs programme employs an innovative paradigm in that it is a multi-centre programme where teaching takes place in five separate institutes with a range of different aims and styles of delivery. The 'in class' time is limited to four weeks a year, and the programme spans two years. PowerLaPs aims to train students from across Europe in theoretical, applied and laboratory skills relevant to the pursuit of research in laser-plasma interaction physics and inertial confinement fusion (ICF). Lectures are intermingled with laboratory sessions and continuous assessment activities. The programme, which is led by workers from the Technological Educational Institute (TEI) of Crete, and supported by co-workers from the Queen's University Belfast, the University of Bordeaux, the Czech Technical University in Prague, Ecole Polytechnique, the University of Ioannina, the University of Salamanca and the University of York, has just completed its first year. Thus far three Learning Teaching Training (LTT) activities have been held, at the Queen's University Belfast, the University of Bordeaux and the Centre for Plasma Physics and Lasers (CPPL) of TEI Crete. The last of these was a two-week long Intensive Programme (IP), while the activities at the other two universities were each five days in length. Thus far work has concentrated upon training in both theoretical and experimental work in plasma physics, high power laser-matter interactions and high energy density physics. The nature of the programme will be described in detail and some metrics relating to the activities carried out to date will be presented

    The Effect of Geometry on the Acoustic Radiation of Plasma Filaments in Air

    No full text
    International audienceLaser-generated plasma filaments in ambient air generate acoustic pulses with characteristic emission directivity and frequency spectra. This work studies the effect of the geometrical characteristics of the plasma channel on the generated acoustic radiation. For this purpose, a model based on the classical line source is adopted, which deploys the correlation between light and sound following laser breakdown to predict the acoustic radiation of filaments in air. Through the model, the acoustic directivity and frequency spectra of plasma filaments with different lengths and plasma density distributions are studied. Preliminary results from acoustic measurements of the filament’s sound radiation are presented in the frequency domain. Finally, a complete model based on the wave equation with a heat source is outlined, which allows for the estimation of the filament’s acoustic radiation in the time and frequency domain at any point in space. Preliminary results from a computational simulation of a scaled model of a plasma channel are also shown, indicating that such a model can predict the directivity and spectral characteristics of filament sound sources

    A Review of Finite Element Studies in String Musical Instruments

    No full text
    String instruments are complex mechanical vibrating systems, in terms of both structure and fluid–structure interaction. Here, a review study of the modeling and simulation of stringed musical instruments via the finite element method (FEM) is presented. The paper is focused on the methods capable of simulating (I) the soundboard behavior in bowed, plucked and hammered string musical instruments; (II) the assembled musical instrument box behavior in bowed and plucked instruments; (III) the fluid–structure interaction of assembled musical instruments; and (IV) the interaction of a musical instrument’s resonance box with the surrounding air. Due to the complexity and the high computational demands, a numerical model including all the parts and the full geometry of the instrument resonance box, the fluid–structure interaction and the interaction with the surrounding air has not yet been simulated

    Spectral and Divergence Characteristics of Plateau High-Order Harmonics Generated by Femtosecond Chirped Laser Pulses in a Semi-Infinite Gas Cell

    No full text
    The generation of high-order harmonics in a semi-infinite cell by femtosecond laser pulses is a common practice for reliable coherent and low divergence XUV source beams for applications. Despite the relative simplicity of the experimental method, several phenomena coexist that affect the generated spectral and divergence characteristics of the high harmonic XUV frequency comb. The ionisation degree of the medium and the consequent plasma formation length imposes a spatiotemporal evolution of the fundamental EM field and XUV absorption. Varying the laser pulse chirp and the focusing conditions, as well as the gas density, we measured intense harmonic spectral and divergence variations attributed mainly to self-phase modulations of the laser EM field in the partially ionised medium. Additionally, low-divergence high harmonics are observed for certain laser chirp values attributed to the strong phase matching of only the short electron quantum path. Thus, a tunable, low divergent, and coherent XUV source can be realised for spatiotemporal imaging applications in the nanoscale

    Spectral and Divergence Characteristics of Plateau High-Order Harmonics Generated by Femtosecond Chirped Laser Pulses in a Semi-Infinite Gas Cell

    No full text
    The generation of high-order harmonics in a semi-infinite cell by femtosecond laser pulses is a common practice for reliable coherent and low divergence XUV source beams for applications. Despite the relative simplicity of the experimental method, several phenomena coexist that affect the generated spectral and divergence characteristics of the high harmonic XUV frequency comb. The ionisation degree of the medium and the consequent plasma formation length imposes a spatiotemporal evolution of the fundamental EM field and XUV absorption. Varying the laser pulse chirp and the focusing conditions, as well as the gas density, we measured intense harmonic spectral and divergence variations attributed mainly to self-phase modulations of the laser EM field in the partially ionised medium. Additionally, low-divergence high harmonics are observed for certain laser chirp values attributed to the strong phase matching of only the short electron quantum path. Thus, a tunable, low divergent, and coherent XUV source can be realised for spatiotemporal imaging applications in the nanoscale

    Vibrational Analysis of a Splash Cymbal by Experimental Measurements and Parametric CAD-FEM Simulations

    No full text
    The present study encompasses a thorough analysis of the vibrations in a splash musical cymbal. The analysis is performed using a hybrid methodology that combines experimental measurements with parametric computer-aided design and finite element method simulations. Experimental measurements, including electronic speckle pattern interferometry, and impulse response measurements are conducted. The interferometric measurements are used as a reference for the evaluation of finite element method modal analysis results. The modal damping ratio is calculated via the impulse response measurements and is adopted by the corresponding simulations. Two different approximations are employed for the computer-aided design and finite element method models: one using three-point arcs and the other using lines to describe the non-smooth curvature introduced during manufacturing finishing procedures. The numerical models employing the latter approximation exhibit better agreement with experimental results. The numerical results demonstrate that the cymbal geometrical characteristics, such as the non-smooth curvature and thickness, greatly affect the vibrational behavior of the percussion instrument. These results are of valuable importance for the development of vibroacoustic numerical models that will accurately simulate the sound synthesis of cymbals

    Quantitative laser mass spectroscopy of sputtered versus evaporated metal atoms

    No full text
    We demonstrate that the presence of excited states in sputtered surface atoms after ion bombardment affects the measured ion yield of a subsequent post multiphoton-ionization processes. This effect was investigated using an advanced time-of-flight mass-spectroscopic technique. This work reports a comparison of two-photon ionization spectra of metallic atoms obtained from solid samples via sputtering and thermal evaporation that reveals the role of excited states. Furthermore we experimentally determine the cross sections for the two photon ionization processes of evaporated Mg, Zn, and In through quantitative ion yield measurement. Numerical configuration interaction calculations for Mg and Zn are presented and the resulting theoretical two-photon ionization cross sections are compared with the measured ones

    Characterization of an X-ray Source Generated by a Portable Low-Current X-Pinch

    No full text
    An X-pinch scheme of a low-current generator (45 kA, 50 ns rise time) is characterized as a potential efficient source of soft X-rays. The X-pinch target consists of wires of 5 μm in diameter—made from either tungsten (W) or gold (Au)-plated W—loaded at two angles of 55° and 98° between the crossed wires. Time-resolved soft X-ray emission measurements are performed to provide a secure correlation with the optical probing results. A reconstruction of the actual photodiode current profile procedure was adopted, capable of overcoming the limits of the slow rising and falling times due to the “slow” response of the diodes and the noise. The pure and Au-plated W deliver an average X-ray yield, which depends only on the angle of the crossed wires, and is measured to be ~50 mJ and ~70 mJ for the 98° and 55° crossed wire angles, respectively. An additional experimental setup was developed to characterize the X-pinch as a source of X-rays with energy higher than ~6 keV, via time-integrated measurements. The X-ray emission spectrum was found to have an upper limit at 13 keV for the Au-plated W configuration at 55°. The portable tabletop X-pinch proved to be ideal for use in X-ray radiography applications, such as the detection of interior defects in biological samples
    corecore