19 research outputs found

    Expression of Cartilage Oligomeric Matrix Protein in colorectal cancer is an adverse prognostic factor and correlates negatively with infiltrating immune cells and PD-L1 expression

    Get PDF
    IntroductionCartilage Oligomeric Matrix Protein (COMP) is an oncogenic protein that has been associated with a decrease in infiltrating T-cells in periampullary adenocarcinoma. This study aimed to investigate whether this is also the case for colorectal cancer (CRC) and to evaluate the relationship between COMP expression and clinopathological features.MethodsImmunohistochemistry was used to determine the expression levels of COMP in tumor cells and stroma in primary tumors from a cohort of 537 CRC patients. The expression of immune cell markers, including CD3+, CD8+, FoxP3+, CD68+, CD56+, CD163+, and PD-L1, was evaluated previously. Tumor fibrosis was assessed by Sirius Red staining and evaluation of collagen fiber organization.ResultsCOMP expression correlated positively with TNM-stage and grade of differentiation. Patients with CRC expressing high levels of COMP had significantly shorter OS than those with low COMP expression (p<0.0001), and fewer infiltrating T-cells were detected in tumors with high COMP expression. Additionally, a negative correlation was identified between the expression of COMP and PD-L1 on both tumor cells and immune cells. Cox regression analysis showed that tumors expressing high levels of COMP had significantly shorter OS, independent of all evaluated immune cell markers. Tumor fibrosis was correlated with high expression of COMP in the stroma (p<0.0001), and tumors with high levels of COMP expression and denser fibrosis displayed more sparse immune cell infiltration.DiscussionThe results suggest that COMP expression in CRC may exert an immune regulatory effect by increasing dense fibrosis and decreasing immune cell infiltration. These findings support the notion that COMP is an important factor in the development and progression of CRC

    Paging on Complex Architectures

    Get PDF
    Advances in technology allow to build computer systems of ever increasing performances and capabilities. However, the effective use of such computational resources is often made difficult by the complexity of the system itself. Crucial to the performance of a computing device is the orchestration of the flow of data across the memory hierarchy. Specifically, given a fast but small memory (a cache) through which all the data that have to be processed must pass, it is necessary to establish a set of rules, then implemented by an algorithm, that define which data has to be evicted from such a memory to make room for new incoming data. The goal is that of minimizing the number of times that requested data is outside the cache (faults), since fetching data from farther levels of the memory hierarchy incurs high costs, in terms of time and also of energy. This thesis studies two generalizations of this problem, known as the paging problem. This problem is intrinsically online, as future data requests issued by a computer program are typically unknown. Motivated by the recent diffusion of multi-threaded and multi-core architectures, whereby several threads or processes can be executed simultaneously, and/or there are several processing units, and by the recent and rapidly growing interest in reducing power consumptions of computer systems, in the first part of the thesis we study a variation of paging which rewards the efficient usage of memory resources. In this problem the goal is that of minimizing a combination of both the number of faults and the cache occupancy of the process' data in fast memory. The main results of this part are two: the first is an impossibility result that indicates that, roughly speaking, online algorithms cannot compete in practice with algorithms that know in advance all the data requests issued by the process; the second is the design of an online algorithm that has almost the best performance among all the possible online algorithms. In the second part of the thesis we concentrate on the management of a cache shared among several concurrent processes. As outlined above, this has direct application in multi-threaded or multi-core architectures. In this problem the fast memory has to service a sequence of requests which is the interleaving of the requests issued by t different processes. Through its replacement decisions, the algorithm dynamically allocates the cache space among the processes, and this clearly impacts their progress. The main goal here is to minimize the time needed to complete the service of all the request sequences. We show tight lower and upper bounds on the performance of online algorithms for several variants of the problem

    Helicobacter pylori Adapts to Chronic Infection and Gastric Disease via pH-Responsive BabA-Mediated Adherence

    Get PDF
    International audienceThe BabA adhesin mediates high-affinity binding of Helicobacter pylori to the ABO blood group antigen-glycosylated gastric mucosa. Here we show that BabA is acid responsive-binding is reduced at low pH and restored by acid neutralization. Acid responsiveness differs among strains; often correlates with different intragastric regions and evolves during chronic infection and disease progression; and depends on pH sensor sequences in BabA and on pH reversible formation of high-affinity binding BabA multimers. We propose that BabA's extraordinary reversible acid responsiveness enables tight mucosal bacterial adherence while also allowing an effective escape from epithelial cells and mucus that are shed into the acidic bactericidal lumen and that bio-selection and changes in BabA binding properties through mutation and recombination with babA-related genes are selected by differences among individuals and by changes in gastric acidity over time. These processes generate diverse H. pylori subpopulations, in which BabA's adaptive evolution contributes to H. pylori persistence and overt gastric disease

    High levels of cartilage oligomeric matrix protein in the serum of breast cancer patients can serve as an independent prognostic marker

    No full text
    Background: Cartilage oligomeric matrix protein (COMP) is a pentameric cartilage protein also expressed in breast cancer tumors. A high expression of COMP evaluated by immunohistochemical staining is as an independent prognostic marker associated with poor patients’ prognosis. Methods: Herein, levels of COMP were analyzed using an IVD approved ELISA in serum samples from 233 well-characterized breast cancer patients; 176 with metastatic breast cancer; and 57 in an early stage of the disease. Results: The metastatic patients had double the concentration of serum COMP compared with those with early breast cancer. High levels of COMP in sera of metastatic patients were associated with the histological subtype (p = 0.025) and estrogen receptor positivity (p = 0.019) at the time of breast cancer diagnosis. Further, correlation was observed between the serum levels of COMP and the presence of liver (p = 0.010) or bone (p = 0.010) metastases in this population. Most importantly, elevated serum levels of COMP appear to serve as an independent prognostic marker of survival as assessed by Cox proportional hazard regression analysis (p = 0.001) for the metastatic patients. Among metastatic patients treated with taxanes (Docetaxel-Paclitaxel) as part of their first metastatic line (n = 25), those with high levels of serum COMP detected in the metastatic stage of the disease had a shorter median survival (0.2 years) compared with those with low levels of serum COMP (1.1 years) (p = 0.001). Conclusions: Taken together, the serum levels of COMP are elevated in the metastatic patients and may be a potential novel biomarker for the evaluation of the prognosis in this population

    High levels of expression of cartilage oligomeric matrix protein in lymph node metastases in breast cancer are associated with reduced survival

    No full text
    Cartilage oligomeric matrix protein (COMP) is a regulator of the extracellular matrix and is expressed primarily in the cartilage. Recently, COMP expression was also documented in breast cancer patients both in sera and tumor biopsies, in both of which it could serve as an independent prognostic marker. This study aimed to assess COMP as a potential biomarker in the group of metastatic breast cancer patients. Levels of COMP were measured by ELISA in serum samples of 141 metastatic breast cancer patients. Biopsies from primary tumors, synchronous lymph node metastases, and distant metastases were stained for COMP expression. The levels of serum COMP were higher in patients with ER‐ and HER2‐positive tumors when compared to triple‐negative tumors and correlated with the presence of bone and lung metastases, circulating tumor cell count, and clusters. Most of the primary tumors expressing COMP (70%) retained the expression also in the lymph node metastases, which correlated with visceral metastases and reduced survival. In conclusion, COMP appears as a valuable biomarker in metastatic breast cancer patients indicating a more severe stage of the disease. Serum COMP levels were associated with specific types of metastases in patients with metastatic breast cancer emphasizing that further studies are warranted to elucidate its potential role as a monitoring marker

    Sushi domain-containing protein 4 binds to epithelial growth factor receptor and initiates autophagy in an EGFR phosphorylation independent manner

    No full text
    Abstract Background Sushi domain-containing protein 4 (SUSD4) is a recently discovered protein with unknown cellular functions. We previously revealed that SUSD4 can act as complement inhibitor and as a potential tumor suppressor. Methods In a syngeneic mouse model of breast cancer, tumors expressing SUSD4 had a smaller volume compared with the corresponding mock control tumors. Additionally, data from three different expression databases and online analysis tools confirm that for breast cancer patients, high mRNA expression of SUSD4 in the tumor tissue correlates with a better prognosis. In vitro experiments utilized triple-negative breast cancer cell lines (BT-20 and MDA-MB-468) stably expressing SUSD4. Moreover, we established a cell line based on BT-20 in which the gene for EGFR was knocked out with the CRISPR-Cas9 method. Results We discovered that the Epithelial Growth Factor Receptor (EGFR) interacts with SUSD4. Furthermore, triple-negative breast cancer cell lines stably expressing SUSD4 had higher autophagic flux. The initiation of autophagy required the expression of EGFR but not phosphorylation of the receptor. Expression of SUSD4 in the breast cancer cells led to activation of the tumor suppressor LKB1 and consequently to the activation of AMPKα1. Finally, autophagy was initiated after stimulation of the ULK1, Atg14 and Beclin-1 axis in SUSD4 expressing cells. Conclusions In this study we provide novel insight into the molecular mechanism of action whereby SUSD4 acts as an EGFR inhibitor without affecting the phosphorylation of the receptor and may potentially influence the recycling of EGFR to the plasma membrane

    Complement inhibitor CSMD1 modulates epidermal growth factor receptor oncogenic signaling and sensitizes breast cancer cells to chemotherapy

    No full text
    Background: Human CUB and Sushi multiple domains 1 (CSMD1) is a large membrane-bound tumor suppressor in breast cancer. The current study aimed to elucidate the molecular mechanism underlying the effect of CSMD1 in highly invasive triple negative breast cancer (TNBC). Methods: We examined the antitumor action of CSMD1 in three TNBC cell lines overexpressing CSMD1, MDA-MB-231, BT-20 and MDA-MB-486, in vitro using scanning electron microscopy, proteome array, qRT-PCR, immunoblotting, proximity ligation assay, ELISA, co-immunoprecipitation, immunofluorescence, tumorsphere formation assays and flow cytometric analysis. The mRNA expression pattern and clinical relevance of CSMD1 were evaluated in 3520 breast cancers from a modern population-based cohort. Results: CSMD1-expressing cells had distinct morphology, with reduced deposition of extracellular matrix components. We found altered expression of several cancer-related molecules, as well as diminished expression of signaling receptors including Epidermal Growth Factor Receptor (EGFR), in CSMD1-expressing cells compared to control cells. A direct interaction of CSMD1 and EGFR was identified, with the EGF-EGFR induced signaling cascade impeded in the presence of CSMD1. Accordingly, we detected increased ubiquitination levels of EGFR upon activation in CSMD1-expressing cells, as well as increased degradation kinetics and chemosensitivity. Accordingly, CSMD1 expression rendered tumorspheres pretreated with gefitinib more sensitive to chemotherapy. In addition, higher mRNA levels of CSMD1 tend to be associated with better outcome of triple negative breast cancer patients treated with chemotherapy. Conclusions: Our results indicate that CSMD1 cross-talks with the EGFR endosomal trafficking cascade in a way that renders highly invasive breast cancer cells sensitive to chemotherapy. Our study unravels one possible underlying molecular mechanism of CSMD1 tumor suppressor function and may provide novel avenues for design of better treatment

    ERK1/2 and AKT activation in AGS cells upon infection with <i>H.</i>

    No full text
    <p><i> pylori</i><b>mutant strains expressing CagA with phosphorylation-functional (EPIYA-C) or -defective (EPIFA-C) motifs.</b> (A) Quantification of ERK1/2 phosphorylation at Thr202/Tyr204 by band densitometry in two independent experiments is depicted by plotting phospho-ERK1/2 (ratio infected to uninfected cells) for each time point.vStatistical analysis was done by Student t-test and levels of significance depicted are *<0.05 and **<0.01. (B) Representative ERK1/2 phosphorylation at Thr202/Tyr204 and (C) the corresponding GAPDH expression. (D) Phosphorylation of AKT at Ser473 determined in total protein lysates from AGS cells infected with corresponding AKT1, 2, 3 and GAPDH expression. Un: uninfected cells.</p

    Immuno-detection of TAK1 and CagA in α-CagA or α-TAK1 respective immuno-precipitated lysates derived from AGS cells infected with <i>H.</i>

    No full text
    <p><i> pylori </i><b>CagA mutant strains, at 1 hour post infection.</b> (Panel A) Immunoprecipitation utilizing polyclonal α-CagA antibody (Austral Biologicals) and TAK1 western blot immunodetection utilizing monoclonal α-TAK1 antibody. Immunoprecipitation utilizing monoclonal α-TAK1 antibody and CagA immunodetection utilizing an α-CagA monoclonal antibody raised against the C-terminal (Panel B) or the N-terminal (Panel C) end of CagA protein. Note that the α-CagA monoclonal antibody raised against the C-terminal (Austral Biologicals) maps exactly on the EPIYA-C domains and fails to detect the P12AB CagA variant in panel B.</p

    Cartilage Oligomeric Matrix Protein initiates cancer stem cells through activation of Jagged1-Notch3 signaling

    No full text
    Cancer stem cell populations are important for the initiation, progression and metastasis of tumors. The mechanisms governing cancer stem cell control are only partially understood, but activation of the Notch3 pathway plays a crucial role in the maintenance of breast cancer stem cells. Expression of Cartilage Oligomeric Matrix Protein (COMP) in breast cancer cells is correlated with poor survival and higher recurrence rates in patients. In this study, we provide in vivo and in vitro evidence that COMP expression increases the proportion of cancer stem cells in breast cancer. Thus, MDA-MB-231 and BT-20 cells expressing COMP formed larger tumorspheres in vivo and in vitro and displayed higher ALDH-activity than cells lacking COMP. Additionally, BT-20 COMP-expressing cells displayed higher expression of CD133 compared with the control cells. Furthermore, among the different Notch receptors, Notch3 is specifically activated in COMP-expressing cells. Mechanistically, activation of Notch3 is mediated by secreted, polymeric COMP, which interacts with both Notch3 and its ligand Jagged1, bridging the receptor and ligand together, enhancing Notch3-specific signaling. COMP-dependent Notch3 activation also leads to cross-talk with β-Catenin and AKT pathways. Using the model of MMTV-PyMT mouse breast tumorigenesis, we observed a decrease in the size of tumors and the amount of cancer stem cells as well as reduced Notch3 activation, in COMP knockout mice in comparison to wild type mice. In conclusion, we reveal a novel molecular mechanism whereby COMP regulates the cancer stem cell population through increasing the interaction between Notch3 and Jagged1, leading to increased activation of Notch3 signaling
    corecore