22 research outputs found

    A combination of trastuzumab and BAG-1 inhibition synergistically targets HER2 positive breast cancer cells

    No full text
    Treatment of HER2+ breast cancer with trastuzumab is effective and combination anti-HER2 therapies have demonstrated benefit over monotherapy in the neoadjuvant and metastatic settings. This study investigated the therapeutic potential of targeting the BAG-1 protein co-chaperone in trastuzumab-responsive or -resistant cells. In the METABRIC dataset, BAG-1 mRNA was significantly elevated in HER2+ breast tumors and predicted overall survival in a multivariate analysis (HR = 0.81; p = 0.022). In a breast cell line panel, BAG-1 protein was increased in HER2+ cells and was required for optimal growth as shown by siRNA knockdown. Overexpression of BAG-1S in HER2+ SKBR3 cells blocked growth inhibition by trastuzumab, whereas overexpression of a mutant BAG-1S protein (BAG-1S H3AB), defective in binding HSC70, potentiated the effect of trastuzumab. Injection of a Tet-On SKBR3 clone, induced to overexpress myc-BAG-1S into the mammary fat pads of immunocompromised mice, resulted in 2-fold larger tumors compared to uninduced controls. Induction of myc-BAG-1S expression in two Tet-On SKBR3 clones attenuated growth inhibition by trastuzumab in vitro. Targeting endogenous BAG-1 by siRNA enhanced growth inhibition of SKBR3 and BT474 cells by trastuzumab, while BAG-1 protein-protein interaction inhibitor (Thio-S or Thio-2) plus trastuzumab combination treatment synergistically attenuated growth. In BT474 cells this reduced protein synthesis, caused G1/S cell cycle arrest and targeted the ERK and AKT signaling pathways. In a SKBR3 subpopulation with acquired resistance to trastuzumab BAG-1 targeting remained effective and either Thio-2 or BAG-1 siRNA reduced growth more compared to trastuzumab-responsive parental cells. In summary, targeting BAG-1 function in combination with anti-HER2 therapy might prove beneficial

    Modelling the UV/optical continuum time-lags in AGN

    No full text
    International audienceThermal reverberation in accretion discs of active galactic nuclei is thought to be the reason of the continuum UV/optical time lags seen in these sources. Recently, we studied thermal reverberation of a standard Novikov-Thorne accretion disc illuminated by an X–ray point-like source, and we derived an analytic prescription for the time lags as function of wavelength. In this work, we use this analytic function to fit the time-lags spectra of seven Seyferts, that have been intensively monitored, in many wave-bands, in the last few years. We find that thermal reverberation can explain the observed UV/optical time lags in all these sources. Contrary to previous claims, the magnitude of the observed UV/optical time-lags is exactly as expected in the case of a standard accretion disc in the lamp-post geometry, given the black hole mass and the accretion rate estimates for the objects we study. We derive estimates of the disc accretion rates and corona height for a non-spinning and a maximally spinning black hole scenarios. We also find that the modelling of the continuum optical/UV time-lags can be used to estimate the black hole spin, when combined with additional information. We also find that the model under-predicts the observed X–ray to UV time-lags, but this difference is probably due to the broad X-ray auto-correlation function of these sources

    The Bag-1 inhibitor, Thio-2, reverses an atypical 3D morphology driven by Bag-1L overexpression in a MCF-10A model of ductal carcinoma in situ

    No full text
    Mammary MCF-10A cells seeded on reconstituted basement membrane form spherical structures with a hollow central lumen termed acini which are a physiologically-relevant model of mammary morphogenesis. Bcl-2 associated athanogene 1 (Bag-1) is a multifunctional protein overexpressed in breast cancer and ductal carcinoma in situ (DCIS). When present in the nucleus Bag-1 is predictive of clinical outcome in breast cancer. Bag-1 exists as three main isoforms, which are produced by alternative translation initiation from a single mRNA. The long isoform of Bag-1, Bag-1L, contains a nuclear localisation sequence not present in the other isoforms. When present in the nucleus Bag-1L, but not the other Bag-1 isoforms, can interact with and modulate the activities of oestrogen, androgen, and vitamin D receptors, Overexpression of Bag-1 mRNA in MCF-10A, is known to produce acini with luminal filling reminiscent of DCIS. As this mRNA predominantly overexpresses the short isoform of Bag-1, Bag-1S, we set out to examine whether the nuclear Bag-1 isoform is sufficient to drive premalignant change by developing a Bag-1L overexpressing MCF-10A model. Two clones differentially overexpressing Bag-1L were grown in 2D and 3D cultures and compared to an established model of HER2-driven transformation. In 2D cultures, Bag-1L overexpression reduced proliferation but did not affect insulin responsiveness or clonogenicity. Acini formed by Bag-1L-overexpressing cells exhibited reduced luminal clearing when compared to controls. An abnormal branching morphology was also observed which correlated with the level of Bag-1L overexpression suggesting further malignant change. Treatment with Thio-2, a small-molecule inhibitor of Bag-1 reduced the level of branching. In summary, 3D cultures of MCF-10A mammary epithelial cells overexpressing Bag-1L demonstrate a premalignant phenotype with features of DCIS. Using this model to test the small molecule Bag-1 inhibitor, Thio-2, reveals its potential to reverse the atypical branched morphology of acini which characterises this premalignant change

    MULTIWAVELENGTH MONITORING OF THE NARROW-LINE SEYFERT 1 GALAXY ARAKELIAN 564. III. OPTICAL OBSERVATIONS AND THE OPTICAL--UV--X-RAY CONNECTION

    Get PDF
    We present the results of a 2 yr long optical monitoring program of the narrow-line Seyfert 1 galaxy Ark 564. The majority of this monitoring project was also covered by X-ray observations (RXT E), and for a period of ~50 days, we observed the galaxy in UV (HST) and X-rays (RXTE and ASCA) simultaneously with the ground-based observations. Rapid and large-amplitude variations seen in the X-ray band, on a daily and hourly timescale, were not detected at optical and UV wavelengths, which in turn exhibited much lower variability either on short (1 day) or long (several months) timescales. The only significant optical variations can be described as two 2È4 day events with ~10% flux variations. We detect no significant optical line variations and thus cannot infer a reverberation size for the broad-line region. Similarly, the large X-ray variations seem to vanish when the light curve is smoothed over a period of 30 days. The UV continuum follows the X-rays with a lag of ~0.4 days, and the optical band lags the UV band by ~2 days. No signiÐcant correlation was found between the entire X-ray data set and the optical band. Focusing on a 20 day interval around the strongest optical event we detect a significant X-ray--optical correlation with similar events seen in the UV and X-rays. Our data are consistent with reprocessing models on the grounds of the energy emitted in this single event. However, several large X-ray flares produced no corresponding optical emission
    corecore