36 research outputs found

    Nanoroughness, Surface Chemistry and Drug Delivery Control by Atmospheric Plasma Jet on Implantable Devices

    Get PDF
    Implantable devices need specific tailored surface morphologies and chemistries to interact with the living systems or to actively induce a biological response also by the release of drugs or proteins. These customised requirements foster technologies that can be implemented in additive manufacturing systems. Here we present a novel approach based on spraying processes that allows to control separately topographic features in the submicron range ( 3d 60 nm - 2 \ub5m), ammine or carboxylic chemistry and fluorophore release even on temperature sensitive biodegradable polymers such as polycaprolactone (PCL). We developed a two-steps process with a first deposition of 220 nm silica and poly(lactic-co-glycolide) (PLGA) fluorescent nanoparticles by aerosol followed by the deposition of a fixing layer by atmospheric pressure plasma jet (APPJ). The nanoparticles can be used to create the nano-roughness and to include active molecule release, while the capping layer ensures stability and the chemical functionalities. The process is enabled by a novel APPJ which allows deposition rates of 10 - 20 nm\ub7s-1 at temperatures lower than 50 \ub0C using argon as process gas. This approach was assessed on titanium alloys for dental implants and on PCL films. The surfaces were characterized by FT-IR, AFM and SEM. Titanium alloys were tested with pre-osteoblasts murine cells line, while PCL film with fibroblasts. Cell behaviour was evaluated by viability and adhesion assays, protein adsorption, cell proliferation, focal adhesion formation and SEM. The release of a fluorophore molecule was assessed in the cell growing media, simulating a drug release. Osteoblast adhesion on the plasma treated materials increased by 20% with respect to commercial titanium alloys implants. Fibroblast adhesion increased by a 100% compared to smooth PCL substrate. The release of the fluorophore by the dissolution of the PLGA nanoparticles was verified and the integrity of the encapsulated drug model confirmed

    Influence of the substrate temperature on the layer properties made by an atmospheric plasma jet using different precursors

    Get PDF
    In this work the surface temperature of porous polymer scaffolds treated with an atmospheric plasma jet was determined by theoretical estimations and infrared was measurements. Based on these results the scaffolds were coated with functional plasma polymer layers using this plasma jet and different precursors. The influence of the substrate temperature on the plasma polymer layer properties like thickness and chemical reactivity was investigated

    Optimization of carbon electrodes derived from epoxy-based photoresist

    Get PDF
    In this contribution we report on results from an optimization study of SU-8 photoresist derived carbon electrodes. SU-8 derived carbon tends to be glassy in nature, however, based on the exact pyrolysis strategy and other fabrication parameters employed one can obtain a range of electrical, electrochemical and thermal properties related to the variation of the graphitic content of the thus obtained carbon. Hence, in order to obtain electrodes that emulate or improve upon the performance of commercially available glassy carbon (GC) electrodes, the right choice of pyrolysis conditions, and fabrication parameters such as the polymer patterning method, the nature of the substrate, polymer precursor film thickness and dimensions of the electrodes are all important. Carbon electrodes made employing a variety of pyrolysis times and pyrolysis end temperatures, film thicknesses and substrates are investigated by cyclic voltammetry of a redox probe ([Fe(CN)(6)](4-)), resistance measurements and spectroscopic analysis (Raman and XRD). SU-8 derived carbon electrodes displayed a wide potential stability window even in acidic media comparable to that of commercially available GC electrodes. Finally, these electrodes were applied to the simultaneous detection of traces of Cd(II) and Pb(II) through anodic stripping voltammetry and detection limits as low as 0.7 and 0.8 mu gL(-1) were achieved

    A novel plasma jet with RF and HF coupled electrodes

    Get PDF
    In order to achieve low processing temperature and efficient coatings deposition for manufacturing applications, a novel torch has been developed that couples in a double DBD design high frequency (HF ~17 kHz) and radio frequency (RF ~27 MHz) excitations. The design allows to obtain a stable RF plasma also in reactive processes and with the possibility to control on the treated substrates ions flux and surface charging, avoiding the micro-discharges. The plasma has been electrically and optically characterized by emission spectroscopy

    Conical nanopore membranes: solvent shaping of nanopores

    Get PDF
    We have undertaken a systematic investigation of the influence of ethanol on the shape of conical pores produced by the track-etch technique in poly(ethylene terephthalate) films. We have found that the cone angle of the conical nanopore generated is dependent on the amount of ethanol present in an alkaline etching solution. By varying the percentage of ethanol in the etch solution, precise control over the geometry of the conical nanopore and nanomaterials templated within these pores can be attained. We prove this by plating gold nanocones within the various conical nanopores prepared, dissolving the membrane to liberate the nanocones, and imaging the nanocones using scanning electron microscopy. The results of these investigations are reported here

    3D additive manufactured composite scaffolds with antibiotic-loaded lamellar fillers for bone infection prevention and tissue regeneration

    Get PDF
    Bone infections following open bone fracture or implant surgery remain a challenge in the orthopedics field. In order to avoid high doses of systemic drug administration, optimized local antibiotic release from scaffolds is required. 3D additive manufactured (AM) scaffolds made with biodegradable polymers are ideal to support bone healing in non-union scenarios and can be given antimicrobial properties by the incorporation of antibiotics. In this study, ciprofloxacin and gentamicin intercalated in the interlamellar spaces of magnesium aluminum layered double hydroxides (MgAl) and α-zirconium phosphates (ZrP), respectively, are dispersed within a thermoplastic polymer by melt compounding and subsequently processed via high temperature melt extrusion AM (~190 °C) into 3D scaffolds. The inorganic fillers enable a sustained antibiotics release through the polymer matrix, controlled by antibiotics counterions exchange or pH conditions. Importantly, both antibiotics retain their functionality after the manufacturing process at high temperatures, as verified by their activity against both Gram + and Gram - bacterial strains. Moreover, scaffolds loaded with filler-antibiotic do not impair human mesenchymal stromal cells osteogenic differentiation, allowing matrix mineralization and the expression of relevant osteogenic markers. Overall, these results suggest the possibility of fabricating dual functionality 3D scaffolds via high temperature melt extrusion for bone regeneration and infection prevention.We are grateful to the FAST project funded under the H2020-NMP- PILOTS-2015 scheme (GA n. 685825) for financial support. Some of the materials used in this work were provided by the Texas A&M Health Science Center College of Medicine Institute for Regenerative Medicine at Scott & White through a grant from NCRR of the NIH (Grant #P40RR017447)

    Ensembles of Gold Nanowires for the Anodic Stripping Voltammetric Determination of Inorganic Arsenic

    No full text
    3D-ensembles of gold nanowires electrodes (3D-NEEs) are produced by electroless gold deposition in track-etched polycarbonate (PC) membranes, followed by partial etching (plama or chemical) of the polymeric membrane. These electrodes are applied to the anodic stripping voltammetric determination of inorganic As. The controlled etching of the PC template increased the gold surface area, widening the linear range of the analytical response with respect to ensembles of gold nanodisk electrodes (2D-NEEs). 3D-NEEs prepared using a chemical etching time of 10 s allows the anodic stripping determination of As(III) with a detection limit of 0.08 g/L and a linear range extended up to 20 g/L. The speciation of inorganic As As(III) and (As(V)) in river water is possible by difference between As(III) and total inorganic As, determined after reduction of As(V) with cysteine. The proposed method is successfully validated by comparison with ICP-MS determination
    corecore