608 research outputs found

    Steady state fluctuation relations for systems driven by an external random force

    Get PDF
    We experimentally study the fluctuations of the work done by an external Gaussian random force on two different stochastic systems coupled to a thermal bath: a colloidal particle in an optical trap and an atomic force microscopy cantilever. We determine the corresponding probability density functions for different random forcing amplitudes ranging from a small fraction to several times the amplitude of the thermal noise. In both systems for sufficiently weak forcing amplitudes the work fluctuations satisfy the usual steady state fluctuation theorem. As the forcing amplitude drives the system far from equilibrium, deviations of the fluctuation theorem increase monotonically. The deviations can be recasted to a single master curve which only depends on the kind of stochastic external force.Comment: 6 pages, submitted to EP

    An experimental-numerical methodology for the nondestructive assessment of the dynamic elastic properties of adhesives

    Get PDF
    In the last years, lightweight design has become a priority in many industrial sectors, like as the aerospace and the automotive industry, mainly due to the strict regulations in terms of gas emission and pollution. Together with lightweight materials, the use of adhesives to join different parts permits to significantly reduce the weight of mechanical assemblies. For a proper design of the joints, the mechanical properties of adhesives should be correctly experimentally assessed. However, the experimental assessment of the adhesive mechanical properties can be complex, since they can be hardly estimated from traditional experimental tests on lap joint or butt-joint specimens. The development of an experimental procedure for the assessment of the adhesive properties is therefore of interest. In the present paper, a methodology for the assessment of the dynamic elastic properties of adhesives, i.e., Young's modulus and the loss factor, is proposed. The procedure is based on the Impulse Excitation Technique and Finite Element Analyses (FEA). An automated routine has been written to assess the elastic properties by minimizing the difference between the frequency response obtained experimentally and through FEA. The proposed methodology has been experimentally validated to estimate the mechanical properties of an epoxy adhesive for automotive applications

    Intersections of self-gravitating charged shells in a Reissner-Nordstrom field

    Full text link
    We describe the equation of motion of two charged spherical shells with tangential pressure in the field of a central Reissner-Nordstrom (RN) source. We solve the problem of determining the motion of the two shells \textsl{after} the intersection by solving the related Einstein-Maxwell equations and by requiring a physical continuity condition on the shells velocities. We consider also four applications: post-Newtonian and ultra-relativistic approximations, a test-shell case, and the ejection mechanism of one shell. This work is a direct generalization of Barkov-Belinski-Bisnovati-Kogan paper.Comment: 21 pages, 1 figure;v3 added reference

    Effects of plasma treatments of polypropylene adhesive joints used in the automotive industry

    Get PDF
    Plasma treatment has been used in recent years to activate the surfaces of adhesive substrates and thus as an adhesion promoter between adhesive and substrates. The use of plasma treatments is widely adopted in the automotive industries especially for polymers that present low surface energy, such as polypropylene. In this work, polypropylene substrates used in the automotive industries have been treated with two different techniques: vacuum and atmospheric plasma. Then, polyurethane and methacrylate adhesives have been used to bond single lap joints (SLJs). Typically, these two adhesives cannot bond polypropylene substrates without surface treatments. An experimental plan has been designed to investigate the process parameters that can increase the functional polar groups (FPGs) maximizing the adhesion strength. Besides the types of plasma, two different gas carriers (air and nitrogen) and different treatment times have been investigated. The substrates, treated and not treated, have been assessed through scanning electron microscopy, energy-dispersive X-ray analysis, and Fourier-transform infrared spectroscopy to quantitatively assess the increment of FPGs after the different treatments. The experimental plan shows that the atmospheric plasma can improve the surface of the substrates by using a smaller time. Mechanical tests on SLJs show that methacrylate and polyurethane cannot bond polypropylene substrates without the plasma treatment. On the other hand, the treated substrates can form a strong bonding with the adhesive since all SLJs exhibit a substrate failure. Mechanical tests have been also carried out after three different aging cycles showing that the adopted plasma treatment is not affected by the aging cycles

    Frequency dependence of viscous and viscoelastic dissipation in coated micro-cantilevers from noise measurement

    Get PDF
    We measure the mechanical thermal noise of soft silicon atomic force microscopy cantilevers. Using an interferometric setup, we have a resolution down to 1E-14 m/rtHz on a wide spectral range (3 Hz to 1E5 Hz). The low frequency behavior depends dramatically on the presence of a reflective coating: almost flat spectrums for uncoated cantilevers versus 1/f like trend for coated ones. The addition of a viscoelastic term in models of the mechanical system can account for this observation. Use of Kramers-Kronig relations validate this approach with a complete determination of the response of the cantilever: a power law with a small coefficient is found for the frequency dependence of viscoelasticity due to the coating, whereas the viscous damping due to the surrounding atmosphere is accurately described by the Sader model

    Evaluation of Common Bean Varieties for Yield and Yield Component in Segen Area Peoples Zone SNNPRS, Ethiopia

    Get PDF
    Studies on the evaluation of variety performance provide opportunities to increase productivity of common bean. Therefore, the current study evaluates the performance of varieties on yield and yield components of common bean during the main cropping season of 2015 and 2016 at four locations in Segen Zone,Konso woreda (Southwestern Ethiopia) with the objectives of  selecting high yielding common bean varieties those are adapted to the study area. Fifteen released common bean varieties and one local cultivar were planted in randomized complete block design with three replications. The analysis revealed that significant variation for all traits except maturity date. Highest yield obtained from Nasir(2136 kgha-1) and Hawassa dume (1948 kgha-1) followed by Sari (1751 kgha-1) were as at Addis Gebere, high grain yield was obtained from Sari (2227 kgha-1), Hawassa dume (2111 kgha-1) and Dimtu (2073 kgha-1). For average mean yield from overall location, high yield obtained from Hawassa dume (2129 kgha-1) and Nasir (2002 kgha-1) followed by Sari (1989 kgha-1). Results revealed that Hawassa dume, Nasir and Sari were best performed and better adapted varieties than the others respectively. Therefore, the above mentioned varieties are promising varieties for the production area and recommendable for area with similar agro-ecologies. Keywords: Phaseolus Vulagris L, Evaluation, Grain yield,Varieties

    Carbon nanotubes adhesion and nanomechanical behavior from peeling force spectroscopy

    Get PDF
    Applications based on Single Walled Carbon Nanotube (SWNT) are good example of the great need to continuously develop metrology methods in the field of nanotechnology. Contact and interface properties are key parameters that determine the efficiency of SWNT functionalized nanomaterials and nanodevices. In this work we have taken advantage of a good control of the SWNT growth processes at an atomic force microscope (AFM) tip apex and the use of a low noise (1E-13 m/rtHz) AFM to investigate the mechanical behavior of a SWNT touching a surface. By simultaneously recording static and dynamic properties of SWNT, we show that the contact corresponds to a peeling geometry, and extract quantities such as adhesion energy per unit length, curvature and bending rigidity of the nanotube. A complete picture of the local shape of the SWNT and its mechanical behavior is provided

    Single beam interferometric angle measurement

    Get PDF
    We present an application of a quadrature phase interferometer to the measurement of the angular position of a parallel laser beam with interferometric precision. In our experimental realization we reach a resolution of 6.8e-10 rad (1.4e-4 arcsec) for 1 kHz bandwidth in a 2e-2 rad (1 deg) range. This alternative to the optical lever technique features absolute calibration, independence of the sensitivity on the thermal drifts, and wide range of measurement at full accuracy
    • …
    corecore