1,451 research outputs found

    Investments in education and welfare in a two-sector, random matching economy

    Get PDF
    We consider a random matching model where heterogeneous agents choose optimally to invest time and real resources in education. Generically, there is a steady state equilibrium, where some agents, but not all of them, invest. Regular steady state equilibria are constrained inefficient in a strong sense. The Hosios (1990) condition is neither necessary, nor sufficient, for constrained efficiency. We also provide restrictions on the fundamentals sufficient to guarantee that equilibria are characterized by overeducation (or undereducation), present some results on their comparative statics properties, and discuss the nature of welfare improving policies.

    Income taxes, subsidies to education, and investments in human capital

    Get PDF
    We study a two-sector economy with investments in human and physical capital and imperfect labor markets. Human and physical capital are heterogeneous. Workers and firms endogenously select the sector they are active in, and choose the amount of their sector-specific investments in human and physical capital. To enter the high-skill sector, workers must pay a fixed cost that we interpret as direct cost of education. Given the distribution of the agents across sectors, at equilibrium, in each sector there is underinvestment in both human and physical capital, due to non-contractibility of investments. A second source of inefficiency is related to the self-selection of the agents into the two sectors. It typically induces too many workers to invest in education. Under suitable restrictions on the parameters, the joint effect of the two distortions is that equilibria are characterized by too many people investing too little effort in the high skill sector. We also analyze the welfare properties of equilibria and study the effects of several tax-subsidy policies on the total expected surplus.

    Innovative 3-D Printing Processing Techniques for Flexible and Wearable Planar Rectennas

    Get PDF
    This work demonstrates the use of a low-cost, lossy, flexible substrate processed by novel 3-D printing techniques which significantly mitigate its intrinsic losses, thus providing performance comparable to those of traditional substrates. These processing techniques are applied to both microstrip and coplanar waveguide structures; they are first derived theoretically, starting from the electromagnetic theory of modes propagation, then numerically validated by full-wave analysis, and finally experimentally verified. The design of a miniaturized 868 MHz rectenna, adopting a coplanar-fed patch antenna based on the proposed fabrication approach, is presented. By means of nonlinear/electromagnetic co-design, the antenna is directly matched to the rectifier. A 30-dB power range starting from -20 dBm is considered. Direct matching allows to get rid of a dedicated matching network and its associated losses, resulting in a slight efficiency increase and a significant reduction of the overall dimensions. Finally, the 3-Dprinted prototype is presented: the overall rectenna performance proves that design freedom enabled by 3-D printing paves the way to the use of low-cost flexible dielectric materials, even with poor electromagnetic properties, to realize wearable battery-free wireless nodes

    Beyond Findability: Search-Enhanced Information Architecture for Content-Intensive Rich Internet Applications

    Get PDF
    This paper details a way to extend classic information architecture for web-based applications. The goal is to enhance traditional user experiences, mainly based on navigation or search, to new ones (also relevant for stakeholders’ requirements). Examples are sense making, at a glance understanding, playful exploration, serendipitous browsing, and brand communication. These new experiences are often unmet by current information architecture solutions, which may be stiff and difficult to scale, especially in the case of large or very large websites. A heavy reliance upon search engines seems not to offer a viable solution: it supports, in fact, a limited range of user experiences. We propose to transform (parts of) websites into Rich Internet Applications (RIAs), based, beside other features, upon interaction-rich interfaces and semantic browsing across content. We introduce SEE-IA (SEarch-Enhanced Information Architecture), a coherent set of information architecture design strategies, which innovatively blend and extend IA and search paradigms. The key ingredients of SEE-IA are a seamless combination of structured hypertext-based information architectures, faceted search paradigms, and RIA-enabled visualization techniques. The paper elucidates and codifies these design strategies and their underlying principles, identifying also how they support a set of requirements which are often neglected by most current design approaches. A real case study of a complex RIA designed for a major institutional client in Italy is used to vividly showcase the design strategies and to provide ready-to-use examples that can be transferred to other IA contexts and domains

    Intermittent Behavior in the AMOC-AMV Relationship

    Get PDF
    The connection between the Atlantic meridional overturning circulation (AMOC) and the Atlantic multidecadal variability (AMV) is inspected in a suite of pre-industrial integrations from the 6th phase of the Coupled Model Inter-comparison Project (CMIP6), using a change-point detection method to identify different AMOC-AMV co-variability regimes. A key finding of this study is that models robustly simulate multi-decadal windows where the AMV and the AMOC are essentially uncorrelated. These regimes coexist with longer periods with relatively high correlation. Drops and recoveries of correlation are found to be often abrupt and confined in a temporal window of the order of 10 years. Phenomenological evidence suggests that the no-correlation regimes may be explained by drops in the variance of the AMOC: a less variable meridional heat transport leads to a suppressed co-variability of the AMV, leaving a larger role for non-AMOC drivers, consistent with a non-stationary AMOC-stationary noise interpretative framework

    Elemental and isotopic profiling: a tool for distinguishing the botanical origin of oenological tannins

    Get PDF
    Much contemporary evidence underscores the pathophysiological importance of Ca2+ handling by acidic organelles such as lysosomes. Whereas our knowledge of how Ca2+ is released from these acidic Ca2+ stores (the ‘outs’) is advancing, we know relatively little about how Ca2+ uptake is effected (the ‘ins’). Here I highlight new work identifying animal Ca2+/H+ (CAX) exchangers that localize to acidic organelles, mediate Ca2+ uptake and regulate cell migration in vivo. Continued molecular definition of the acidic Ca2+ store toolkit provides new insight into Ca2+-dependent function

    An all-in-one dual band blade antenna for ads-b and 5g communications in uav assisted wireless networks

    Get PDF
    This paper is aimed at the characterization and manufacturing of an SMA coaxial fed com-pact blade antenna with dual frequency characteristics for broadband applications on board of Unmanned Air Vehicles (UAVs). This antenna is linearly polarized, and it combines the benefits of Automatic Dependent Surveillance-Broadcast (ADS-B) and 5th Generation (5G) communications in one single element, covering both the 1.030–1.090 GHz and the 3.4–3.8 GHz bands thanks to a bent side and a ‘C’ shaped slot within the radiation element. Starting from the simulation outcomes on an ideal ground plane, the results are here extended to a bent ground plane and on two UAV com-mercial CAD models. Details of manufacturing of the antenna in both aluminium and FR-4 substrate materials are presented. The comparison between measurements and simulations is discussed in terms of return loss, bandwidth, gain, and radiation pattern. Results show an antenna with a low profile and a simple structure that can be employed in various wideband communication systems, suiting future UAV assisted 5G networks while being perfectly compliant with forthcoming ADS-B based Detect-And-Avoid (DAA) technologies in Unmanned Aerial Traffic Management (UTM)

    Microwave Devices for Wearable Sensors and IoT

    Get PDF
    The Internet of Things (IoT) paradigm is currently highly demanded in multiple scenarios and in particular plays an important role in solving medical-related challenges. RF and microwave technologies, coupled with wireless energy transfer, are interesting candidates because of their inherent contactless spectrometric capabilities and for the wireless transmission of sensing data. This article reviews some recent achievements in the field of wearable sensors, highlighting the benefits that these solutions introduce in operative contexts, such as indoor localization and microwave sensing. Wireless power transfer is an essential requirement to be fulfilled to allow these sensors to be not only wearable but also compact and lightweight while avoiding bulky batteries. Flexible materials and 3D printing polymers, as well as daily garments, are widely exploited within the presented solutions, allowing comfort and wearability without renouncing the robustness and reliability of the built-in wearable sensor
    corecore