160 research outputs found

    From design to management: a benchmarking process for the energy efficiency of buildings

    Get PDF
    Environmental quality and energy efficiency are strategic objectives which can highlight the ‘effectiveness’ of design and technological choices, as well as the impact of management strategies and user behaviour. Studies show it is possible to narrow the gap between expected and actual energy consumption if technical performance, occupant behaviour, and management systems are considered together. In the United Kingdom, industries and universities have created ‘Carbon Buzz’ based on the principles of Evidence Based Design. Following on from this project, Rome Tre University, together with UCL and Aedas R&D, are developing a platform using structured data and comparisons to create a link between energy performance and CO2 emissions, and choices regarding design, technology, and management

    Gut Dysbiosis and Western Diet in the Pathogenesis of Essential Arterial Hypertension: A Narrative Review

    Get PDF
    Metabolic syndrome is a cluster of the most dangerous cardiovascular (CV) risk factors including visceral obesity, insulin resistance, hyperglycemia, alterations in lipid metabolism and arterial hypertension (AH). In particular, AH plays a key role in the complications associated with metabolic syndrome. High salt intake is a well-known risk factor for AH and CV diseases. Vasoconstriction, impaired vasodilation, extracellular volume expansion, inflammation, and an increased sympathetic nervous system (SNS) activity are the mechanisms involved in the pathogenesis of AH, induced by Western diet. Gut dysbiosis in AH is associated with reduction of short chain fatty acid-producing bacteria: acetate, butyrate and propionate, which activate different pathways, causing vasoconstriction, impaired vasodilation, salt and water retention and a consequent high blood pressure. Moreover, increased trimethylamine N-oxide and lipopolysaccharides trigger chronic inflammation, which contributes to endothelial dysfunction and target organs damage. Additionally, a high salt-intake diet impacts negatively on gut microbiota composition. A bidirectional neuronal pathway determines the "brain-gut" axis, which, in turn, influences blood pressure levels. Then, we discuss the possible adjuvant novel treatments related to gut microbiota modulation for AH control

    Treatment of hemophilia: a review of current advances and ongoing issues

    Get PDF
    Replacement of the congenitally deficient factor VIII or IX through plasma-derived or recombinant concentrates is the mainstay of treatment for hemophilia. Concentrate infusions when hemorrhages occur typically in joint and muscles (on-demand treatment) is able to resolve bleeding, but does not prevent the progressive joint deterioration leading to crippling hemophilic arthropathy. Therefore, primary prophylaxis, ie, regular infusion of concentrates started after the first joint bleed and/or before the age of two years, is now recognized as first-line treatment in children with severe hemophilia. Secondary prophylaxis, whenever started, aims to avoid (or delay) the progression of arthropathy and improve patient quality of life. Interestingly, recent data suggest a role for early prophylaxis also in preventing development of inhibitors, the most serious complication of treatment in hemophilia, in which multiple genetic and environmental factors may be involved. Treatment of bleeds in patients with inhibitors requires bypassing agents (activated prothrombin complex concentrates, recombinant factor VIIa). However, eradication of inhibitors by induction of immune tolerance should be the first choice for patients with recent onset inhibitors. The wide availability of safe factor concentrates and programs for comprehensive care has now resulted in highly satisfactory treatment of hemophilia patients in developed countries. Unfortunately, this is not true for more than two-thirds of persons with hemophilia, who live in developing countries

    Modelling Environmental Niche for the Endangered Crayfish Austropotamobius pallipesComplex in Northern and Central Italy

    Get PDF
    The potential distribution of endangered species is a necessary step to assess species conservation status and manage reintroduction plans. In the context of a EU project on the endangered Austropotamobius pallipescomplex, we modelled the environmental niche of the species in two large areas of Northern (Lombardy, 43 records) and Central Italy (Abruzzo, Province of Isernia, Gran Sasso e Monti della Laga National Park; 69 records). Ecological niche models (ENMs) were built by using the maximum entropy approach as implemented in the MaxEnt software, which predicts the occurrence of a species using presence-only data. The environmental niche was modelled using six variables: altitude, slope, aspect, human disturbance, mean temperature of warmest quarter and distance from stream. Each study area was modelled independently. Both ENMs obtained high performance scores as measured by the AUC index (Northern Italy: 0.854; Central Italy: 0.817). Slope in Northern Italy and the mean temperature of warmest quarter in Central Italy achieved the greatest predictive power. Our results clearly show that the endangered white-clawed crayfish has a narrow range of habitat selection in the two study areas. Our findings may help researchers to select the best sites for future reintroductions in conservation projects

    Dissecting the susceptibility/resistance mechanism of Vitis vinifera for the future control of downy mildew

    Get PDF
    23CO.NA.VI. 2020 – 8° Convegno Nazionale di Viticoltura, Udine, Italy, July 5-7, 2021openInternationalBothThe Eurasian grapevine (Vitis vinifera), a species cultivated worldwide for high-quality wine production, is extremely susceptible to the agent of downy mildew, Plasmopara viticola. Nevertheless, germplasm from Georgia (Southern Caucasus, the first grapevine domestication centre), characterized by a high genetic variability, showed resistance traits to P. viticola. The cultivar Mgaloblishvili exhibited the most promising phenotype in terms of resistance against P. viticola. Its defence response results in: i) low disease intensity; ii) low sporulation; iii) damaged mycelium; iv) production of antimicrobial compounds such as volatile organic compounds (VOCs), whose effectiveness on the pathogen was evaluated by leafdisc assays. At the transcriptomic level, its resistance mechanism is determined by the differential expression of both resistance and susceptible genes. The resistance genes are related to: i) pathogen recognition through PAMP, DAMP and effector receptors; ii) ethylene signalling pathway; iii) synthesis of antimicrobial compounds (VOCs) and fungal wall degrading enzymes; iv) development of structural barriers (cell wall reinforcement). The first putative susceptible gene was the transcription factor VviLBDIf7 gene, whose validation was carried out by dsRNA (double-stranded RNA) assay. In this work, these unique results on plant-pathogen interaction are reviewed with the aim of developing new strategies to control the disease.openRicciardi, Valentina; Marcianò, Demetrio; Sargolzaei, Maryam; Marrone Fassolo, Elena; Fracassetti, Daniela; Brilli, Matteo; Moser, Mirko; Vahid, Shariati J.; Tavakole, Elahe; Maddalena, Giuliana; Passera, Alessandro; Casati, Paola; Pindo, Massimo; Cestaro, Alessandro; Costa, Alex; Bonza, Maria Cristina; Maghradze, David; Tirelli, Antonio; Failla, Osvaldo; Bianco, Piero Attilio; Quaglino, Fabio; Toffolatti, Silvia Laura; De Lorenzis, GabriellaRicciardi, V.; Marcianò, D.; Sargolzaei, M.; Marrone Fassolo, E.; Fracassetti, D.; Brilli, M.; Moser, M.; Vahid, S.J.; Tavakole, E.; Maddalena, G.; Passera, A.; Casati, P.; Pindo, M.; Cestaro, A.; Costa, A.; Bonza, M.C.; Maghradze, D.; Tirelli, A.; Failla, O.; Bianco, P.A.; Quaglino, F.; Toffolatti, S.L.; De Lorenzis, G

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    • …
    corecore