22 research outputs found
Advances in Thin-Film Si Solar Cells by Means of SiOx Alloys
The conversion efficiency of thin-film silicon solar cells needs to be improved to be competitive with respect to other technologies. For a more efficient use of light across the solar spectrum, multi-junction architectures are being considered. Light-management considerations are also crucial in order to maximize light absorption in the active regions with a minimum of parasitic optical losses in the supportive layers. Intrinsic and doped silicon oxide alloys can be advantageously applied within thin-film Si solar cells for these purposes. Intrinsic a-SiOx:H films have been fabricated and characterized as a promising wide gap absorber for application in triple-junction solar cells. Single-junction test devices with open circuit voltage up to 950 mV and ~1 V have been demonstrated, in case of rough and flat front electrodes, respectively. Doped silicon oxide alloys with mixed-phase structure have been developed, characterized by considerably lower absorption and refractive index with respect to standard Si-based films, accompanied by electrical conductivity above 10−5 S/cm. These layers have been successfully applied both into single-junction and micromorph tandem solar cells as superior doped layers with additional functionalities
Degradation of micromorph silicon solar cells after exposure to 65 MeV protons
Silicon micromorph tandem solar cells, grown on commercial. TCO coated substrates by plasma enhanced chemical vapour deposition, with an initial efficiency higher than 10%, have been degraded, in order to check their stability under space conditions, by irradiation with 65 MeV protons with fluences ranging from 10^12 protons/cm^2 up to 10^14 protons/cm^2. For low proton fluences we find a stronger decrease of the top amorphous cell photocurrent due to the stronger impact of the proton beam on the glass substrate transparency in the visible wavelength range, as compared to the infrared range. Only for very high fluences a stronger degradation of the photocurrent in the infrared wavelength range where the bottom microcrystalline cell is dominating the spectral response, has been observed. Because the non-irradiated cell has been found to be spectrally mismatched in favour of the top amorphous cell under AM1.5 and even more under AM0 irradiation conditions, for low and intermediate fluences the irradiation decreases the spectral mismatch of the micromorph tandem cells and results consequently in a relative stabilization of the irradiation induced degradation
Impedance Spectroscopy for the Characterization of the All-Carbon Graphene-Based Solar Cell
In this work, front contacts for graphene-based solar cells are made by means of colloidal graphite instead of gold. The performance is characterized by exploiting impedance spectroscopy and is compared to the standard gold contact technology. Impedance data are analysed through equivalent circuit representation in terms of lumped parameters, suitable to describe the complex impedance in the frequency range considered in the experiments. Using this approach, capacitance–voltage of the considered graphene–silicon solar cell is found and the barrier height forming at the graphene–silicon interface is extracted
Self-organized nanoscale roughness engineering for broadband light trapping in thin film solar cells
We present a self-organizedmethod based on defocused ion beamsputtering for nanostructuring glass substrates which feature antireflective and light trapping effects. By irradiating the substrate, capped with a thin gold (Au) film, a self-organized Au nanowire stencil mask is firstly created. The morphology of the mask is then transferred to the glass surface by further irradiating the substrate, finally producing high aspect ratio, uniaxial ripple-like nanostructures whose morphological parameters can be tailored by varying the ion fluence. The effect of a Ti adhesion layer, interposed between glass and Au with the role of inhibiting nanowire dewetting, has also been investigated in order to achieve an improved morphological tunability of the templates. Morphological and optical characterization have been carried out, revealing remarkable light trapping performance for the largest ion fluences. The photon harvesting capability of the nanostructured glass has been tested for different preparation conditions by fabricating thin film amorphous Si solar cells. The comparison of devices grown on textured and flat substrates reveals a relative increase of the short circuit current up to 25%. However, a detrimental impact on the electrical performance is observed with the rougher morphologies endowed with steep v-shaped grooves. We finally demonstrate that post-growth ion beam restructuring of the glass template represents a viable approach toward improved electrical performance