18 research outputs found

    4-oxo-N-(4-hydroxyphenyl)retinamide: Two Independent Ways to Kill Cancer Cells

    Get PDF
    BACKGROUND: The retinoid 4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR) is a polar metabolite of fenretinide (4-HPR) very effective in killing cancer cells of different histotypes, able to inhibit 4-HPR-resistant cell growth and to act synergistically in combination with the parent drug. Unlike 4-HPR and other retinoids, 4-oxo-4-HPR inhibits tubulin polymerization, leading to multipolar spindle formation and mitotic arrest. Here we investigated whether 4-oxo-4-HPR, like 4-HPR, triggered cell death also via reactive oxygen species (ROS) generation and whether its antimicrotubule activity was related to a ROS-dependent mechanism in ovarian (A2780), breast (T47D), cervical (HeLa) and neuroblastoma (SK-N-BE) cancer cell lines. METHODOLOGY/PRINCIPAL FINDINGS: We provided evidence that 4-oxo-4-HPR, besides acting as an antimicrotubule agent, induced apoptosis through a signaling cascade starting from ROS generation and involving endoplasmic reticulum (ER) stress response, Jun N-terminal Kinase (JNK) activation, and upregulation of the proapoptotic PLAcental Bone morphogenetic protein (PLAB). Through time-course analysis and inhibition of the ROS-related signaling pathway (upstream by vitamin C and downstream by PLAB silencing), we demonstrated that the antimitotic activity of 4-oxo-4-HPR was independent from the oxidative stress induced by the retinoid. In fact, ROS generation occurred earlier than mitotic arrest (within 30 minutes and 2 hours, respectively) and abrogation of the ROS-related signaling pathway did not prevent the 4-oxo-4-HPR-induced mitotic arrest. CONCLUSIONS/SIGNIFICANCE: These data indicate that 4-oxo-4-HPR anticancer activity is due to at least two independent mechanisms and provide an explanation of the ability of 4-oxo-4-HPR to be more potent than the parent drug and to be effective also in 4-HPR-resistant cell lines. In addition, the double mechanism of action could allow 4-oxo-4-HPR to efficiently target tumour and to eventually counteract the development of drug resistance

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    AF1q: A Novel Mediator of Basal and 4-HPR-Induced Apoptosis in Ovarian Cancer Cells

    Get PDF
    <div><h3>Background</h3><p>Fenretinide (4-HPR) is a synthetic retinoid that exhibits potent antitumor and chemopreventive activities against different malignancies, including ovarian tumors. We previously showed that in ovarian cancer cells, 4-HPR induces apoptosis through a signaling cascade starting from reactive oxygen species (ROS) generation and involving endoplasmic reticulum (ER) stress response, Jun N-terminal Kinase (JNK) activation, and induction of the proapoptotic PLAcental Bone morphogenetic protein (PLAB). Since recent studies have shown that the oncogene ALL1-fused from chromosome 1q (AF1q), a retinoic acid target gene, is implicated in apoptosis induction by several therapeutic agents, we investigated its possible involvement in the apoptosis induced by 4-HPR in ovarian cancer cells.</p> <h3>Methodology/Principal Findings</h3><p>Protein expression analysis, performed in ovarian cancer cells and extended to other histotypes (breast, neuroblastoma, and cervical), revealed that 4-HPR enhanced AF1q expression in cancer cells sensitive to the retinoid but not in resistant cells. Through gene silencing, AF1q was found functionally involved in 4-HPR-induced apoptosis in A2780, an ovarian cancer cell line highly sensitive to retinoid growth inhibitory and apoptotic effects. Inhibition of the signaling intermediates of the 4-HPR apoptotic cascade showed that AF1q upregulation was depended on prior generation of ROS, induction of ER stress response, JNK activation, and PLAB upmodulation. Finally, we found that direct overexpression of AF1q, in the absence of external stimuli, increased apoptosis in ovarian cancer cell lines.</p> <h3>Conclusions/Significance</h3><p>The study expands the knowledge of the 4-HPR mechanism of action, which has not yet been completely elucidated, identifying AF1q as a novel mediator of retinoid anticancer activity. In addition, we demonstrate, for the first time, that AF1q plays a role in the onset of basal apoptosis in ovarian cancer cells, thus providing new information about the activity of this protein whose biologic functions are mostly unknown.</p> </div

    Scheme showing proposed cascade of events involved in 4-HPR-induced growth inhibitory effect.

    No full text
    <p>4-HPR induces apoptosis through a signaling cascade involving oxidative stress, ER stress response, JNK activation, overexpression of the proapoptotic protein PLAB, and AF1q upregulation.</p

    Relationship between AF1q upregulation and 4-HPR-induced signaling cascade.

    No full text
    <p>Western blot analysis for AF1q expression in A2780 cells treated for 24 hours with 5 µM 4-HPR, with or without 100 µM vitamin C (A), 10 µM salubrinal (B), or 10 µM SP600125 (C). (D) Western blot analysis for AF1q expression in A2780 cells stably transfected with a plasmid containing a PLAB siRNA or a scrambled nonsilencing siRNA following addition of 5 µM 4-HPR for 24 hours. As a control for loading, the blots were incubated with actin antibody.</p

    Effect of AF1q overexpression in the onset of basal apoptosis.

    No full text
    <p>(A) Immunofluorescence analysis of A2780 cells transiently transfected with GFP alone (upper panels) or GFP-tagged AF1q vector (AF1q-GFP) (lower panels). After 48 hours, GFP and AF1q-GFP cells were stained with Hoechst 33342 and nuclear morphology was examined with a fluorescent microscope. Cells of interest are marked by arrows. Cells with condensed and fragmented nuclei were identified and scored as apoptotic cells. One experiment representative of three is shown. The scale bar represents 10 µm. (B) Apoptosis was represented as percentage of apoptotic cells per 100 green fluorescent cells (at least 200 cells per sample) in A2780 (left panel) and OVCAR-3 (right panel) cells transfected as in (A). Data represent the mean±S.D. of three independent experiments. Asterisks indicate significant difference (P<0.05).</p

    Effects of 4-HPR on AF1q expression in A2780 and A2780/HPR cells.

    No full text
    <p>Western blot analysis for AF1q expression in A2780 (A) and A2780/HPR (B) cells treated for 24 hours with 5 and 10 µM 4-HPR. As a control for loading, the blots were incubated with actin antibody.</p

    Effects of different retinoids on AF1q expression in A2780 cells.

    No full text
    <p>Western blot analysiso for AF1q expression and caspase-3 cleavage in A2780 cells treated for 24 hours with 10 µM RA or 4-MPR, or 3 µM 4-oxo-4-HPR. As a control for loading, the blot was incubated with actin antibody.</p
    corecore