1,163 research outputs found

    Fluctuation Exchange Analysis of Superconductivity in the Standard Three-Band CuO2 Model

    Full text link
    The fluctuation exchange, or FLEX, approximation for interacting electrons is applied to study instabilities in the standard three-band model for CuO2 layers in the high-temperature superconductors. Both intra-orbital and near-neigbor Coulomb interactions are retained. The filling dependence of the d(x2-y2) transition temperature is studied in both the "hole-doped" and "electron-doped" regimes using parameters derived from constrained-occupancy density-functional theory for La2CuO4. The agreement with experiment on the overdoped hole side of the phase diagram is remarkably good, i.e., transitions emerge in the 40 K range with no free parameters. In addition the importance of the "orbital antiferromagnetic," or flux phase, charge density channel is emphasized for an understanding of the underdoped regime.Comment: REVTex and PostScript, 31 pages, 26 figures; to appear in Phys. Rev. B (1998); only revised EPS figures 3, 4, 6a, 6b, 6c, 7 and 8 to correct disappearance of some labels due to technical problem

    Toward a systematic 1/d expansion: Two particle properties

    Full text link
    We present a procedure to calculate 1/d corrections to the two-particle properties around the infinite dimensional dynamical mean field limit. Our method is based on a modified version of the scheme of Ref. onlinecite{SchillerIngersent}}. To test our method we study the Hubbard model at half filling within the fluctuation exchange approximation (FLEX), a selfconsistent generalization of iterative perturbation theory. Apart from the inherent unstabilities of FLEX, our method is stable and results in causal solutions. We find that 1/d corrections to the local approximation are relatively small in the Hubbard model.Comment: 4 pages, 4 eps figures, REVTe

    Spin Fluctuation-Induced Superconductivity in Organic Compounds

    Full text link
    Spin fluctuation-induced superconductivity in two-dimensional organic compounds such as \kappa-(ET)_2-X is investigated by using a simplified dimer Hubbard model with right-angled isosceles triangular lattice (transfer matrices -\tau, -\tau^\prime). The dynamical susceptiblity and the self-energy are calculated self-consistently within the fluctuation exchange approximation and the value for T_c as obtained by solving the linearized Eliashberg-type equations is in good agreement with experiment. The pairing symmetry is of d_{x^2-y^2} type. The calculated (U/\tau)-dependence of T_c compares qualitatively well with the observed pressure dependence of T_c. Varying the value for \tau^\prime/\tau from 0 to 1 we interpolate between the square lattice and the regular triangular lattice and find firstly that values of T_c for \kappa-(ET)_2-X and cuprates scale well and secondly that T_c tends to decrease with increasing \tau^\prime/\tau and no superconductivity is found for \tau^\prime/\tau=1, the regular triangular lattice.Comment: 4 pages, 6 eps figures, uses jpsj.st

    Coefficient of normal restitution of viscous particles and cooling rate of granular gases

    Full text link
    We investigate the cooling rate of a gas of inelastically interacting particles. When we assume velocity dependent coefficients of restitution the material cools down slower than with constant restitution. This behavior might have large influence to clustering and structure formation processes.Comment: 3 figures, Phys. Rev. E (in press

    Stability of condensate in superconductors

    Full text link
    According to the BCS theory the superconducting condensate develops in a single quantum mode and no Cooper pairs out of the condensate are assumed. Here we discuss a mechanism by which the successful mode inhibits condensation in neighboring modes and suppresses a creation of noncondensed Cooper pairs. It is shown that condensed and noncondensed Cooper pairs are separated by an energy gap which is smaller than the superconducting gap but large enough to prevent nucleation in all other modes and to eliminate effects of noncondensed Cooper pairs on properties of superconductors. Our result thus justifies basic assumptions of the BCS theory and confirms that the BCS condensate is stable with respect to two-particle excitations

    Superconductivity and Pseudogap in Quasi-Two-Dimensional Metals around the Antiferromagnetic Quantum Critical Point

    Full text link
    Spin fluctuations (SF) and SF-mediated superconductivity (SC) in quasi-two-dimensional metals around the antiferrromagnetic (AF) quantum critical point (QCP) are investigated by using the self-consistent renormalization theory for SF and the strong coupling theory for SC. We introduce a parameter y0 as a measure for the distance from the AFQCP which is approximately proportional to (x-xc), x being the electron (e) or hole (h) doping concentration to the half-filled band and xc being the value at the AFQCP. We present phase diagrams in the T-y0 plane including contour maps of the AF correlation length and AF and SC transition temperatures TN and Tc, respectively. The Tc curve is dome-shaped with a maximum at around the AFQCP. The calculated one-electron spectral density shows a pseudogap in the high-density-of-states region near (pi,0) below around a certain temperature T* and gives a contour map at the Fermi energy reminiscent of the Fermi arc. These results are discussed in comparison with e- and h-doped high-Tc cuprates.Comment: 5 pages, 3 figure

    Reduction of Tc due to Impurities in Cuprate Superconductors

    Full text link
    In order to explain how impurities affect the unconventional superconductivity, we study non-magnetic impurity effect on the transition temperature using on-site U Hubbard model within a fluctuation exchange (FLEX) approximation. We find that in appearance, the reduction of Tc roughly coincides with the well-known Abrikosov-Gor'kov formula. This coincidence results from the cancellation between two effects; one is the reduction of attractive force due to randomness, and another is the reduction of the damping rate of quasi-particle arising from electron interaction. As another problem, we also study impurity effect on underdoped cuprate as the system showing pseudogap phenomena. To the aim, we adopt the pairing scenario for the pseudogap and discuss how pseudogap phenomena affect the reduction of Tc by impurities. We find that 'pseudogap breaking' by impurities plays the essential role in underdoped cuprate and suppresses the Tc reduction due to the superconducting (SC) fluctuation.Comment: 14 pages, 28 figures To be published in JPS

    Collective Excitations in High-Temperature Superconductors

    Full text link
    Collective, low-energy excitations in quasi-two-dimensional d-wave superconductors are analyzed. While the long-range Coulomb interaction shifts the charge-density-wave and phase modes up to the plasma energy, the spin-density-wave excitation that arises due to a strong local electron-electron repulsion can propagate as a damped collective mode within the superconducting energy gap. It is suggested that these excitations are relevant to high-Tc superconductors, close to the antiferromagnetic phase boundary, and may explain some of the exotic features of the experimentally observed spectral-density and neutron-scattering data.Comment: 5 jolly page

    s-wave superconductivity from antiferromagnetic spin-fluctuation model for bilayer materials

    Full text link
    It is usually believed that the spin-fluctuation mechanism for high-temperature superconductivity results in d-wave pairing, and that it is destructive for the conventional phonon-mediated pairing. We show that in bilayer materials, due to nearly perfect antiferromagnetic spin correlations between the planes, the stronger instability is with respect to a superconducting state whose order parameters in the even and odd plane-bands have opposite signs, while having both two-dimensional ss-symmetry. The interaction of electrons with Raman- (infrared-) active phonons enhances (suppresses) the instability.Comment: Revtex, 3 figure

    Superconductivity in the quasi-two-dimensional Hubbard model

    Full text link
    On the basis of spin and pairing fluctuation-exchange approximation, we study the superconductivity in quasi-two-dimensional Hubbard model. The integral equations for the Green's function are self-consistently solved by numerical calculation. Solutions for the order parameter, London penetration depth, density of states, and transition temperature are obtained. Some of the results are compared with the experiments for the cuprate high-temperature superconductors. Numerical techniques are presented in details. With these techniques, the amount of numerical computation can be greatly reduced.Comment: 17 pages, 13 figure
    • …
    corecore